Aufgaben 6 Quadratische Funktion und Gleichungen Quadratische Funktion

Lernziele

- den Grafen einer quadratischen Funktion aus der Scheitelpunktsform der Funktionsgleichung skizzieren können.
- die Lage des Scheitelpunktes einer Parabel aus der Scheitelpunktsform der Funktionsgleichung der entsprechenden quadratischen Funktion bestimmen können.
- die Scheitelpunktsform der Funktionsgleichung einer quadratischen Funktion in die allgemeine Form umformen können.
- die Methode der quadratischen Ergänzung kennen, verstehen und anwenden können.
- die allgemeine Form der Funktionsgleichung einer quadratischen Funktion in die Scheitelpunktsform umformen können

Aufgaben

6.1 Betrachten Sie die einfachstmögliche quadratische Funktion:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

- a) Erstellen Sie eine Wertetabelle von f für das Intervall $-4 \le x \le 4$.
- b) Zeichnen Sie den Grafen von f im Intervall $-4 \le x \le 4$ in ein kartesisches Koordinatensystem.
- 6.2 Die Funktionsgleichung einer allgemeinen quadratischen Funktion kann in der sogenannten Scheitelpunktsform geschrieben werden:

$$f: \ D \to \mathbb{R} \\ x \mapsto y = f(x) = a(x - u)^2 + v \qquad (D \subseteq \mathbb{R}) \\ (a \in \mathbb{R} \setminus \{0\}, u \in \mathbb{R}, v \in \mathbb{R})$$

Untersuchen Sie den Einfluss der drei Parameter a, u und v auf den Grafen einer quadratischen Funktion.

Vorgehen:

- In jeder Teilaufgabe a) bis d) sind drei quadratische Funktionen f₀, f₁ und f₂ gegeben.
- In den drei Funktionen wird einer der drei Parameter verändert, während die anderen beiden Parameter konstant gehalten werden.
- Der Einfluss des entsprechenden Parameters kann beschrieben werden, indem man die Grafen der drei Funktionen vergleicht.
- a) Parameter **u** (**u wird verändert**, a und v werden konstant gehalten)

$$\begin{aligned} y &= f_0(x) = x^2 & (a = 1, \, \textbf{u} = \textbf{0}, \, v = 0) \\ y &= f_1(x) = (x - 2)^2 & (a = 1, \, \textbf{u} = \textbf{2}, \, v = 0) \\ y &= f_2(x) = (x + 1)^2 & (a = 1, \, \textbf{u} = \textbf{-1}, \, v = 0) \end{aligned}$$

- i) Skizzieren Sie die Grafen der Funktionen f₀, f₁ und f₂ in ein einziges Koordinatensystem.
- ii) Beschreiben Sie den Einfluss des Parameters u, indem Sie die drei Grafen vergleichen.
- b) Parameter v (v wird verändert, a und u werden konstant gehalten)

$$\begin{array}{lll} y = f_0(x) = x^2 & (a = 1, u = 0, \mathbf{v} = \mathbf{0}) \\ y = f_1(x) = x^2 + 3 & (a = 1, u = 0, \mathbf{v} = \mathbf{3}) \\ y = f_2(x) = x^2 - 2 & (a = 1, u = 0, \mathbf{v} = -\mathbf{2}) \end{array}$$

- i) Skizzieren Sie die Grafen der Funktionen f_0 , f_1 und f_2 in ein einziges Koordinatensystem.
- ii) Beschreiben Sie den Einfluss des Parameters v, indem Sie die drei Grafen vergleichen.

c) Parameter a (a wird verändert, u und v werden konstant gehalten)

$$\begin{aligned} y &= f_0(x) = x^2 & (\textbf{a} = \textbf{1}, u = 0, v = 0) \\ y &= f_1(x) = 2x^2 & (\textbf{a} = \textbf{2}, u = 0, v = 0) \\ y &= f_2(x) = -2x^2 & (\textbf{a} = -\textbf{2}, u = 0, v = 0) \end{aligned}$$

- i) Skizzieren Sie die Grafen der Funktionen f_0 , f_1 und f_2 in ein einziges Koordinatensystem.
- ii) Beschreiben Sie den Einfluss des Parameters a, indem Sie die drei Grafen vergleichen.
- d) Parameter a (a wird verändert, u und v werden konstant gehalten)

$$\begin{split} y &= f_0(x) = x^2 \\ y &= f_1(x) = \frac{1}{2} x^2 \\ y &= f_2(x) = -\frac{1}{2} x^2 \end{split} \qquad \begin{aligned} & \left(\textbf{a} = \textbf{1}, \, u = 0, \, v = 0 \right) \\ & \left(\textbf{a} = \frac{\textbf{1}}{2}, \, u = 0, \, v = 0 \right) \\ & \left(\textbf{a} = -\frac{\textbf{1}}{2}, \, u = 0, \, v = 0 \right) \end{aligned}$$

- i) Skizzieren Sie die Grafen der Funktionen f₀, f₁ und f₂ in ein einziges Koordinatensystem.
- ii) Beschreiben Sie den Einfluss des Parameters a, indem Sie die drei Grafen vergleichen.
- 6.3 Bearbeiten Sie jede quadratische Funktion f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) bis h) wie folgt:
 - i) Geben Sie die Parameter a, u und v an.
 - ii) Geben Sie die Koordinaten des Scheitelpunktes des Grafen an.
 - iii) Geben Sie an, ob die Parabel, d.h. der Graf der Funktion, nach oben oder nach unten geöffnet ist.
 - iv) Zeichnen Sie den Grafen der Funktion.

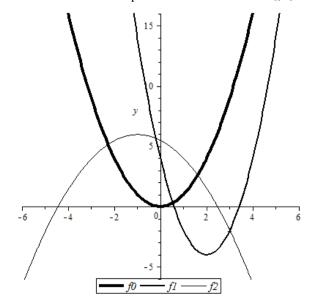
a)
$$y = f(x) = (x + 2)^2$$
 b) $y = f(x) = -3x^2$

c)
$$y = f(x) = 2x^2 - 1$$
 d) $y = f(x) = -(x - 3)^2 + 4$

e)
$$y = f(x) = \frac{1}{2}(x+3)^2 + 2$$
 f) $y = f(x) = -2(x-1)^2 + 5$

g)
$$y = f(x) = \frac{5}{2} - \left(x - \frac{1}{2}\right)^2$$
 h) $y = f(x) = -\frac{1}{2} - 3(2 - x)^2$

6.4 Betrachten Sie die Grafen der quadratischen Funktionen f₀, f₁ und f₂:



Bestimmen Sie die Scheitelpunktsform der Funktionsgleichungen der drei Funktionen, d.h. y = f(x) = ...

6.5	Die Funktionsgleichung einer quadratischen Funktion ist in der Scheitelpunktsform geschrieben.
	Bestimmen Sie die allgemeine Form der Funktionsgleichung

- a) $y = f(x) = 2(x 3)^2 + 4$
- b) $y = f(x) = -(x+2)^2 3$

c) $y = f(x) = x^2 + 5$

- d) $y = f(x) = -3(x 4)^2$
- Formen Sie die gegebene Funktionsgleichung einer quadratischen Funktion mit Hilfe der quadratischen Ergänzung in die Scheitelpunktsform um:
 - a) $y = f(x) = 3x^2 12x + 8$
- b) $y = f(x) = x^2 + 6x$

c) $y = f(x) = x^2 - 2x + 1$

- d) $y = f(x) = 2x^2 + 12x + 18$
- e) $y = f(x) = -2x^2 6x 2$
- f) $y = f(x) = x^2 + 1$
- g) $y = f(x) = -\frac{1}{2}x^2 + 2x 2$
- h) $y = f(x) = -4x^2 + 24x 43$
- i) y = f(x) = 2(x 3)(x + 4)
- j) $y = f(x) = x + 3 (x + \frac{1}{2})x$
- 6.7 Beurteilen Sie die Grafen der quadratischen Funktionen f in den Aufgaben 6.6 a) bis f) wie folgt:
 - i) Bestimmen Sie die Koordinaten des Scheitelpunktes.
 - ii) Geben Sie an, ob die Parabel nach oben oder nach unten geöffnet ist.
- 6.8 Entscheiden Sie, welche Aussagen wahr oder falsch sind. Kreuzen Sie das entsprechende Kästchen an. In jeder Aufgabe a) bis c) ist genau eine Aussage wahr.
 - a) Der Graf einer quadratischen Funktion ...
 - ... schneidet die x-Achse immer in zwei Punkten.
 - ... ist nach unten geöffnet, falls er keinen gemeinsamen Punkt mit der x-Achse hat.
 - ... berührt die x-Achse, falls es nur einen Scheitelpunkt gibt.
 - ... ist immer eine Parabel.
 - b) f ist eine lineare und g eine quadratische Funktion. Es kann gefolgert werden, dass die Grafen von f und g ...

... keine gemeinsamen Punkte haben.

- ... sich nur schneiden, falls die Steigung von f nicht null ist.
- ... nicht mehr als zwei gemeinsame Punkte haben können.
- ... mindestens einen gemeinsamen Punkt haben.
- c) Die Scheitelpunktsform der Funktionsgleichung einer quadratischen Funktion ...

... ist identisch mit der allgemeinen Form, falls der Scheitelpunkt des Grafen auf der y-Achse liegt.

... kann aus der allgemeinen Form durch Ausmultiplizieren aller Terme erhalten werden.

- ... existiert nicht, falls der Graf nach unten geöffnet ist.
- ... hängt nur von der Lage des Scheitelpunktes ab.