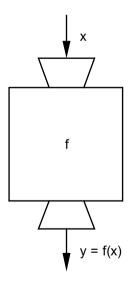

Function

Definition and examples

Def.: A function f is a rule that assigns to each element x in a set D exactly one element y in a set C.

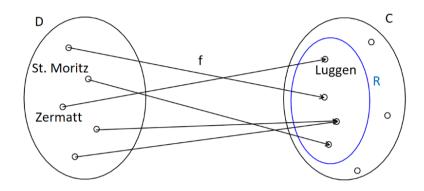


The function f maps the set D onto the set C.

f: D
$$\rightarrow$$
 C
 $x \mapsto y = f(x)$ ("f of x")

The set D is the **domain**, the set C is the **codomain**, and the set R is the **range** of the function f.

The element y is the **image** of the element x. or (if D and C are number sets): y is the **value** of f at the position x.



Ex.: 1. D = set of all Swiss holiday resorts

C = set of all human beings

 $f: D \rightarrow C$

 $r \mapsto h = f(r) = director of holiday resort r$

2. D = set of all countries of the world

C = set of all towns and cities of the world

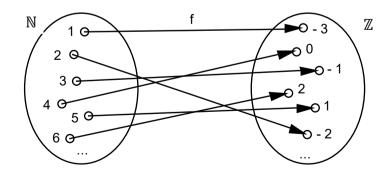
 $f: D \rightarrow C$

 $c \mapsto t = f(c) = capital of country c$

3. Cable car company

 $D = \mathbb{N}$ (= set of natural numbers)

 $C = \mathbb{R}$ (= set of real numbers)


 $n \mapsto r = f(n) = \text{revenue (in CHF)}$ when n tickets are sold

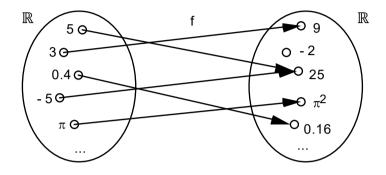
4. $D = \mathbb{N}$

$$C = \mathbb{Z}$$

 $f: \mathbb{N} \to \mathbb{Z}$

$$n \mapsto y = f(n) = n - 4$$

5. $\mathbf{D}=\mathbf{C}=\mathbb{R}$


$$p: \mathbb{R} \to \mathbb{R}$$

p:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = p(x) = \frac{x^3 - 3}{2x^2 + 1}$

Representation of a function

Ex.: f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

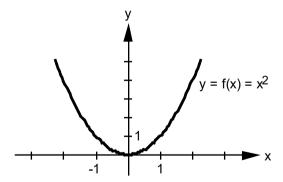

Arrow diagram

Table (Table of values)

X	у
1	1
3	9
5	25
- 5	25
0.4	0.16

Graph

