Übung 14 Grenzwert und Stetigkeit Grenzwert einer Funktion, Stetigkeit einer Funktion

Lernziele

- verstehen, was der Grenzwert einer Funktion ist.
- verstehen, was der links- bzw. rechtsseitige Grenzwert einer Funktion ist.
- die symbolische Schreibweise für den Grenzwert einer Funktion kennen und korrekt anwenden können.
- einfachere Grenzwerte von Funktionen bestimmen können.
- beurteilen können, ob eine einfachere Funktion an einer bestimmten Stelle stetig ist oder nicht.

Aufgaben

1. Gegeben sind die folgenden beiden Funktionen f_1 und f_2 :

$$f_1$$
: R R, x $y = f_1(x) = x$ f_2 : R\{2} R, x $y = f_2(x) = \frac{x^2-2x}{x-2}$

- a) Skizzieren Sie die Grafen der beiden Funktionen f₁ und f₂.
- b) Beurteilen Sie für beide Funktionen f_1 und f_2 , ob die folgende Aussage wahr oder falsch ist: "Die Funktion ist an der Stelle $x_0 = 2$ nicht definiert, besitzt an dieser Stelle jedoch einen Grenzwert."
- 2. Beurteilen Sie mit schlüssiger Begründung, ob die folgenden Aussagen über den Grenzwert einer Funktion wahr oder falsch sind:
 - "Wenn an einer Stelle x_0 sowohl der linksseitige als auch der rechtsseitige Grenzwert existiert, dann existiert der Grenzwert an dieser Stelle x_0 ."
 - b) "Wenn der Grenzwert an einer Stelle x₀ exisiert, dann existiert an dieser Stelle x₀ sowohl der linksseitige als auch der rechtsseitige Grenzwert."
 - c) "Wenn an einer Stelle x₀ sowohl der linksseitige als auch der rechtsseitige Grenzwert existiert und beide gleich gross sind, dann existiert der Grenzwert an dieser Stelle x₀."
 - d) "Wenn der Grenzwert an einer Stelle x_0 nicht existiert, dann existiert an dieser Stelle x_0 entweder der linksseitige oder der rechtsseitige Grenzwert nicht."
 - e) "Wenn der Grenzwert an einer Stelle x₀ existiert, dann ist er gleich gross wie der linksseitige und der rechtsseitige Grenzwert an dieser Stelle x₀."
 - f) "Wenn die Funktion an der Stelle x_0 definiert ist, dann existiert an dieser Stelle x_0 der Grenzwert."
 - g) "Wenn der Grenzwert an einer Stelle x_0 existiert, dann ist die Funktion an dieser Stelle x_0 definiert."
- 3. Papula: 298/4, 298/5, 298/6
- 4. Bestimmen Sie die folgenden Grenzwerte:
 - a) $\lim_{x \to 2} \frac{x+1}{2x+3}$ b) $\lim_{x \to 2} \frac{x+1}{x^2-1}$ c) $\lim_{x \to 2} \frac{5-2x}{2x^2-3x-5}$ d) $\lim_{x \to 2} \frac{x^2-2x-8}{x^2+3x+2}$ e) $\lim_{x \to 0} \frac{(a+x)^2-a^2}{x}$ f) $\lim_{x \to 0} \frac{1}{a+x} \frac{1}{a}$
- 5. Papula: 298/8, 298/9

Lösungen

- 1. a) ...
 - b) Die Funktionen f_1 und f_2 unterscheiden sich nur an der Stelle $x_0 = 2$:

 f_1 ist an der Stelle $x_0 = 2$ definiert und hat dort den Funktionswert $f_1(2) = 2$.

Der Grenzwert für x 2 existiert: $\lim_{x \to 2} f_1(x) = 2$

 f_2 ist an der Stelle $x_0 = 2$ nicht definiert.

Der Grenzwert für x 2 existiert jedoch: $\lim_{x \to 2} f_2(x) = 2$

- 2. a) falsch
 - b) wahr
 - c) wahr
 - d) falsch
 - e) wahr
 - f) falsch
 - g) falsch
- 3. siehe Papula
- 4. a) $\frac{1}{2}$
 - b) 0
 - c) $-\frac{2}{7}$
 - d) 6
 - e) 2a
 - f) $-\frac{1}{a^2}$
- 5. siehe Papula