Aufgaben 10 Funktionstypen Konstante, lineare, quadratische Funktion

Lernziele

- den Grafen einer konstanten, linearen, quadratischen Funktion skizzieren können.
- die Existenz von Nullstellen einer konstanten, linearen, quadratischen Funktion beurteilen können.
- die Injektivität, Surjektivität und Bijektivität einer konstanten, linearen, quadratischen Funktion beurteilen können.
- die Umkehrfunktion einer bijektiven linearen, quadratischen Funktion bestimmen können.
- den Zusammenhang zwischen den Grafen einer bijektiven Funktion und deren Umkehrfunktion kennen und verstehen.
- den Einfluss einer Verschiebung, Skalierung auf den Grafen einer Funktion kennen und verstehen.
- die Normalform der Funktionsgleichung einer quadratischen Funktion von Hand in die Scheitelpunktsform und umgekehrt umformen können.
- die Funktionsgleichung einer quadratischen Funktion bestimmen können, welche in einer konkreten Problemstellung den quadratischen Zusammenhang zweier Grössen beschreibt.

Aufgaben

Konstante, lineare Funktion

- 10.1 Bearbeiten Sie für die konstante bzw. lineare Funktion f die folgenden Teilaufgaben:
 - i) Skizzieren Sie den Grafen von f.
 - ii) Beurteilen Sie, wieviele Nullstellen die Funktion f hat.
 - iii) Beurteilen Sie die Injektivität, Surjektivität und Bijektivität von f.
 - iv) Bestimmen Sie die Umkehrfunktion f⁻¹ von f für den Fall, dass f bijektiv ist.
 - v) Beurteilen Sie, ob und wie man die Injektivität, Surjektivität und Bijektivität von f beeinflussen kann, indem man den Definitionsbereich und/oder den Zielbereich auf je eine Teilmenge von ℝ einschränkt.
 - a) Konstante Funktion

$$f: \mathbb{R} \to \mathbb{R}, x \to y = f(x) = a_0$$

b) Lineare Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \, x \to y = f(x) = a_1 \cdot x + a_0 \quad (a_1 \neq 0)$$

10.2 Fassen Sie die Umkehrfunktion f^{-1} einer **linearen** Funktion f als neue Funktion auf, die jedem $x \in \mathbb{R}$ ein $y \in \mathbb{R}$ zuordnet:

$$f^{-1}: \mathbb{R} \to \mathbb{R}, x \to y = f^{-1}(x)$$

Die unabhängige Variable soll also wie bei der Ausgangsfunktion f mit x bezeichnet werden.

- Zeichnen Sie die Grafen von f und f⁻¹ ins gleiche Koordinatensystem.
 Was gibt es für einen grafischen Zusammenhang zwischen den Grafen von f und f⁻¹?
- b) Beurteilen Sie, ob der in a) gefundene Zusammenhang für die Grafen einer **beliebigen** bijektiven Funktion und deren Umkehrfunktion gilt.

Quadratische Funktion

10.3 Betrachten Sie die einfachstmögliche **quadratische** Funktion f und die aus f abgeleiteten Funktionen f_1 , f_2 , f_3 und f_4 :

$$\begin{split} &f\colon \mathbb{R} \to \mathbb{R}, \, x \to y = f(x) = x^2 \\ &f_1\colon \mathbb{R} \to \mathbb{R}, \, x \to y = f_1(x) := f(x - x_0) = (x - x_0)^2 \qquad (x_0 \in \mathbb{R} \setminus \{0\}) \\ &f_2\colon \mathbb{R} \to \mathbb{R}, \, x \to y = f_2(x) := f(x) + y_0 = x^2 + y_0 \qquad (y_0 \in \mathbb{R} \setminus \{0\}) \\ &f_3\colon \mathbb{R} \to \mathbb{R}, \, x \to y = f_3(x) := f(a \cdot x) = (a \cdot x)^2 \qquad (a \in \mathbb{R} \setminus \{0,1\}) \\ &f_4\colon \mathbb{R} \to \mathbb{R}, \, x \to y = f_4(x) := a \cdot f(x) = a \cdot x^2 \qquad (a \in \mathbb{R} \setminus \{0,1\}) \end{split}$$

- a) Skizzieren Sie ins gleiche Koordinatensystem die Grafen von ...
 - i) ... f und f_1 Unterscheiden Sie dabei die beiden Fälle $x_0 > 0$ und $x_0 < 0$.
 - ii) ... f und f_2 Unterscheiden Sie dabei die beiden Fälle $y_0 > 0$ und $y_0 < 0$.
 - iii) ... f und f_3 Unterscheiden Sie dabei die fünf Fälle $a>1,\,0< a<1,\,-1< a<0,\,a=-1$ und a<-1.
 - iv) ... f und f_4 Unterscheiden Sie dabei die fünf Fälle a > 1, 0 < a < 1, -1 < a < 0, a = -1 und a < -1.

Formulieren Sie jeweils den bildlichen Zusammenhang zwischen den Grafen mit einem deutschen Satz.

- b) Beurteilen Sie, ob die in a) formulierten Zusammenhänge zwischen den Grafen für eine **beliebige** Ausgangsfunktion f gelten.
- 10.4 Betrachten Sie die allgemeine quadratische Funktion

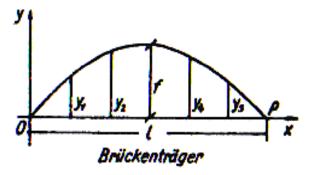
f:
$$\mathbb{R} \to \mathbb{R}$$
, $x \to y = f(x) = a_2 \cdot x^2 + a_1 \cdot x + a_0 \quad (a_2 \neq 0)$

- a) Beurteilen Sie grafisch, wieviele Nullstellen eine quadratische Funktion hat.
- b) Beurteilen Sie die Injektivität, Surjektivität und Bijektivität von f.
- c) Beurteilen Sie, ob und wie man die Injektivität, Surjektivität und Bijektivität von f beeinflussen kann, indem man den Definitionsbereich und/oder den Zielbereich auf je eine Teilmenge von ℝ einschränkt.
- 10.5 Gegeben sind die quadratischen Funktionen f: A \rightarrow B, x \rightarrow y = f(x) =
 - a) $f(x) = x^2 2$
 - b) $f(x) = -(x+3)^2 4$
 - c) $f(x) = 2x^2 4x + 7$

Lösen Sie für jede Funktion a) bis c) die folgenden Aufgaben:

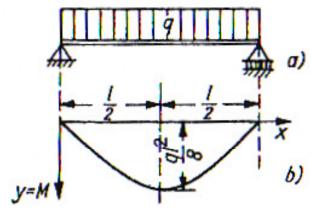
- i) Bestimmen Sie die Normalform und die Scheitelpunktsform der Funktionsgleichung von f.
- ii) Skizzieren Sie den Grafen von f für $A = B = \mathbb{R}$.
- iii) Bestimmen Sie die Mengen A und B so, dass die Funktion f bijektiv wird.
 - iii.i) Der Graf von f soll die ganze rechte Parabelhälfte inklusive Scheitelpunkt sein.
 - iii.ii) Der Graf von f soll die ganze linke Parabelhälfte inklusive Scheitelpunkt sein.
- iv) Bestimmen Sie die Umkehrfunktion f⁻¹: $B \to A$, $x \to y = f^{-1}(x)$ für beide Fälle in iii).
- v) Skizzieren Sie die Grafen von f und f⁻¹ für beide Fälle in iii)

- 10.6 Papula 1: 314/4 (299/4) (ohne Produktform)
- 10.7 Der Bogen einer Brücke ist ein Parabelträger von der Spannweite l = 20 m und der Pfeilhöhe f = 5 m.



Bestimmen Sie die Länge der fünf in gleichen Abständen angebrachten Vertikalstäbe.

10.8 Für den in Bild a) dargestellten, mit einer konstanten Streckenlast q belasteten Träger auf zwei Stützen gibt Bild b) den Verlauf des Biegemomentes M, die sogenannte Biegemomentenlinie wieder. Die Biegemomentenlinie ist eine Parabel:



Stellen Sie gemäss den Angaben des Bildes b) die Gleichung dieser Parabel auf, wobei der Ursprung des Koordinatensystems im linken Auflager liegen soll.

10.9 Die Funktionsgleichung einer quadratischen Funktion f hat die allgemeine Form

$$y = f(x) = a_2x^2 + a_1x + a_0 \quad (a_2 \neq 0)$$

Zeigen Sie, dass der Graf jeder quadratischen Funktion eine Parabel ist.

Hinweise:

- Vergleichen Sie die Funktionsgleichung mit der in der Aufgabe 6.6 c) hergeleiteten Gleichung der Parabel.
- Wenn es gelingt, zu jeder Wahl für die Koeffizienten a₀, a₁ und a₂ einen Parameterwert p und Koordinaten x₀ und y₀ für den Scheitelpunkt S zu finden, ist bewiesen, dass der Graf jeder quadratischen Funktion eine Parabel ist.

Lösungen

10.1 i) a)

> $a_0 = 0$: Jedes $x \in \mathbb{R}$ ist Nullstelle von f. ii)

> > $a_0 \neq 0$: f besitzt keine Nullstelle

- nicht injektiv, nicht surjektiv ⇒ nicht bijektiv iii)
- iv) f besitzt keine Umkehrfunktion.
- v)
- b) i)
 - f hat genau eine Nullstelle bei $x_1 = -\frac{a_0}{a_1}$ ii)
 - iii) injektiv, surjektiv ⇒ bijektiv
 - $f^{-1}: \mathbb{R} \to \mathbb{R}, y \to x = f^{-1}(y) = \frac{1}{a_1}y \frac{a_0}{a_1}$ iv)
 - v)
- 10.2 a)
 - b)
- 10.3 Der Graf von f_1 ist gegenüber dem Grafen von f um x_0 horizontal nach rechts (falls $x_0>0$) a) i) bzw. nach links (falls $x_0<0$) verschoben.
 - ii) Der Graf von f_2 ist gegenüber dem Grafen von f um y_0 vertikal nach oben (falls $y_0>0$) bzw. nach unten (falls $y_0 < 0$) verschoben.
 - Der Graf von f₃ ist gegenüber dem Grafen von f horizontal gestaucht (falls |a|>1) bzw. iii) gestreckt (falls lal<1). Für a<0 wird der Graf zusätzlich an der y-Achse gespiegelt.
 - iv) Der Graf von f₄ ist gegenüber dem Grafen von f vertikal gestreckt (falls lal>1) bzw. gestaucht (falls |a|<1). Für a<0 wird der Graf zusätzlich an der x-Achse gespiegelt.
 - b)
- 10.4 0, 1 oder 2 Nullstellen a)
 - b) nicht injektiv, nicht surjektiv ⇒ nicht bijektiv
 - c)
- $y = f(x) = x^2 2$ 10.5 i) Normalform: a) $y = f(x) = x^2 - 2$ Scheitelpunktsform:
 - ii)
 - $A = \mathbb{R}_0^+$, $B = \{y \in \mathbb{R} \mid y \ge -2\}$ $A = \mathbb{R}_0^-$, $B = \{y \in \mathbb{R} \mid y \ge -2\}$ iii.i) iii)
 - iii.ii)
 - f^{-1} : $B \to A$, $x \to y = f^{-1}(x) = \sqrt{x+2}$ f^{-1} : $B \to A$, $x \to y = f^{-1}(x) = \sqrt{x+2}$ iv) iv.i)
 - iv.ii)
 - v) v.i) v.ii) •••

b) i) Normalform:
$$y = f(x) = -x^2 - 6x - 13$$

Scheitelpunktsform: $y = f(x) = -(x + 3)^2 - 4$

- ii) ..
- iii) $\text{iii.i)} \qquad A = \{x \in \mathbb{R} \mid x \geq -3\}, \, B = \{y \in \mathbb{R} \mid y \leq -4\}$
 - iii.ii) $A = \{x \in \mathbb{R} \mid x \le -3\}, B = \{y \in \mathbb{R} \mid y \le -4\}$

iv) iv.i)
$$f^{-1}: B \to A, x \to y = f^{-1}(x) = \sqrt{-x-4} - 3$$

iv.ii)
$$f^{-1}$$
: $B \to A$, $x \to y = f^{-1}(x) = -\sqrt{-x-4} - 3$

- v) v.i) ... v.ii) ...
- c) i) Normalform: $y = f(x) = 2x^2 4x + 7$ Scheitelpunktsform: $y = f(x) = 2(x - 1)^2 + 5$
 - ii) ..
 - iii) iii.i) $A = \{x \in \mathbb{R} \mid x \ge 1\}, B = \{y \in \mathbb{R} \mid y \ge 5\}$
 - iii.ii) $A = \{x \in \mathbb{R} \mid x \le 1\}, B = \{y \in \mathbb{R} \mid y \ge 5\}$
 - iv) iv.i) $f^{-1}: B \to A, x \to y = f^{-1}(x) = \sqrt{\frac{x-5}{2}} + 1$
 - iv.ii) $f^{-1}: B \to A, x \to y = f^{-1}(x) = -\sqrt{\frac{x-5}{2}} + 1$
 - v) v.i) ... v.ii) ...
- 10.6 siehe Papula 1

10.7
$$y_1 = y_5 = 2.78 \text{ m}$$
 $y_2 = y_4 = 4.44 \text{ m}$ $y_3 = f = 5.00 \text{ m}$

10.8
$$y = -\frac{q}{2}\left(x - \frac{l}{2}\right)^2 + \frac{q l^2}{8}$$

10.9 ...