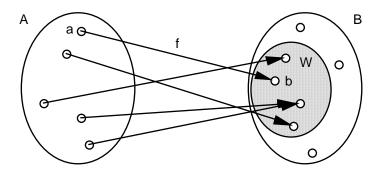
Funktion

Definition und Beispiele

Def.: Eine **Funktion** f ist eine Vorschrift, die **jedem** Element a aus einer Menge A **genau ein** Element b aus einer Menge B zuordnet.



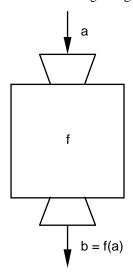
Durch die Funktion f wird die Menge A auf die Menge B abgebildet.

f:
$$A \rightarrow B$$

 $a \rightarrow b = f(a)$ ("f von a")

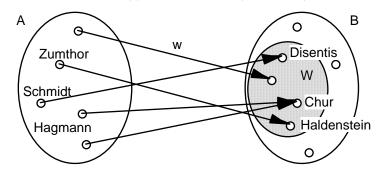
Die Menge A ist der **Definitionsbereich** (Definitionsmenge), die Menge B der **Zielbereich** (Zielmenge, Cobereich, Wertevorrat), die Menge W der **Bildbereich** (Wertebereich, Wertemenge) der Funktion f.

b ist das zum Element a gehörige **Bildelement** (Funktionswert).



Bsp.: 1. A = Menge aller in der Schweiz wohnhaften Bündner Architekten B = Menge aller Schweizer Gemeinden

w: $A \rightarrow B$ $a \rightarrow b = w(a) = Wohnort von a (Stand 2000)$



 $2. \hspace{1cm} A = Menge \hspace{0.1cm} aller \hspace{0.1cm} Eisenbahnbrücken \hspace{0.1cm} im \hspace{0.1cm} Kanton \hspace{0.1cm} Graubünden$

 $B = \{1847, 1848, 1849, ..., 2013, 2014, 2015\}$

e: $A \rightarrow B$

 $b \rightarrow j = e(b) = Jahr der Einweihung von b$

3. A = B = Menge aller Punkte einer Ebene

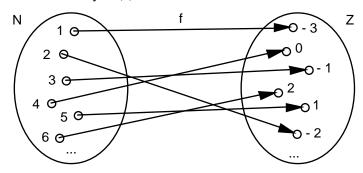
 $\begin{array}{ccc} S_g \colon & & A \to A \\ P & \to & P' = S_g(P) = Bildpunkt \ von \ P \ bezüglich \ der \ Geradenspiegelung \ an \ der \ Geraden \ g \end{array}$

4. $A = \mathbb{N}$ (= Menge der natürlichen Zahlen)

 $B = \mathbb{Z}$ (= Menge der ganzen Zahlen)

f: $\mathbb{N} \to \mathbb{Z}$

$$n \rightarrow y = f(n) = n - 4$$



5. $A = \mathbb{R}_0^+$ (= Menge der positiven reellen Zahlen inklusive 0)

 $B = \mathbb{R}$ (= Menge der reellen Zahlen)

 $\begin{array}{ccc} f \colon & \mathbb{R}_0^+ \to \ \mathbb{R} \\ x & \to \ y = f(x) = \sqrt{x} \end{array}$

6. $A = B = \mathbb{R}$

p: $\mathbb{R} \to \mathbb{I}$

$$x \rightarrow y = p(x) = \frac{x^3 - 3}{2x^2 + 1}$$

Darstellung einer Funktion

Pfeildiagramm

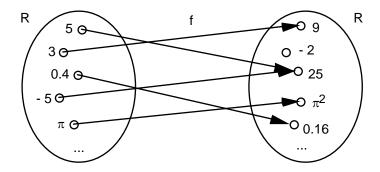


Tabelle (Wertetabelle)

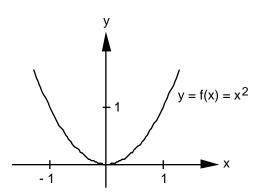
X	у
1	1
3	9
5	25
- 5	25
0.4	0.16

Funktionsvorschrift (Funktionsgleichung)

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \to y = f(x) = x^2$

Graf



Zusammengesetzte Funktion

Gegeben seien zwei Funktionen f und g:

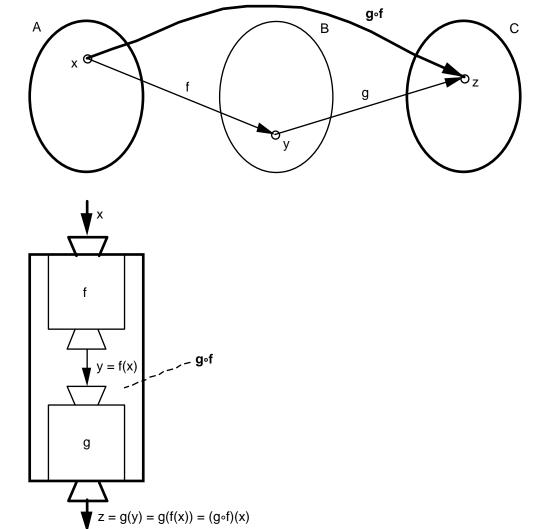
f:
$$A \rightarrow B$$

 $x \rightarrow y = f(x)$

$$A \rightarrow B$$
 g: $B \rightarrow C$ $y \rightarrow z = g(y)$

Die zusammengesetzte Funktion gof ist definiert durch: Def.:

$$g \circ f$$
: $A \rightarrow C$
 $x \rightarrow z = (g \circ f)(x) := g(f(x))$



Bsp.: f:
$$\mathbb{N} \to \mathbb{Q}^+$$

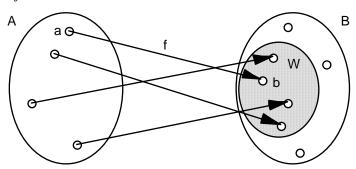
 $x \to y = f(x) = \frac{x}{2}$

$$\begin{array}{ccc} : & \mathbb{Q}^+ \to \ \mathbb{R}^+ \\ y & \to \ z = g(y) = \sqrt{y} \end{array}$$

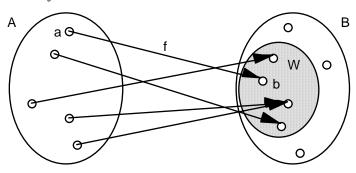
$$\begin{split} g \circ f \colon & \mathbb{N} \ \to \ \mathbb{R}^+ \\ & x \ \to \ z = (g \circ f)(x) = g(f(x)) = g\left(\frac{x}{2}\right) = \sqrt{\frac{x}{2}} \end{split}$$

Injektivität, Surjektivität, Bijektivität

Def.: Eine Funktion f: $A \rightarrow B$ heisst **injektiv**, falls jedes Element $b \in W$ Bildelement eines **einzigen** Elementes $a \in A$ ist.

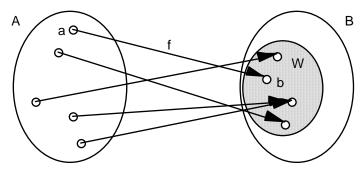


Nicht-injektive Funktion

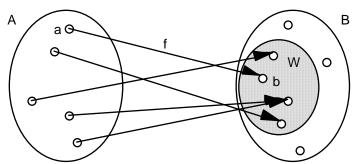


Def.: Eine Funktion f: $A \rightarrow B$ heisst **surjektiv**, falls **jedes** Element $b \in B$ als Bildelement auftritt, d.h. falls W = B.

Surjektive Funktion

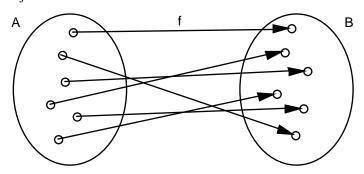


Nicht-surjektive Funktion



Def.: Eine Funktion f: $A \rightarrow B$ heisst **bijektiv**, falls sie **sowohl injektiv als auch surjektiv** ist.

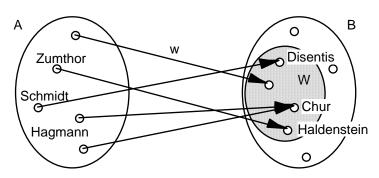
Bijektive Funktion



Bsp.: 1. A = Menge aller in der Schweiz wohnhaften Bündner Architekten B = Menge aller Schweizer Gemeinden

w:
$$A \rightarrow B$$

 $a \rightarrow b = w(a) = Wohnort von a (Stand 2000)$



w nicht injektiv, w nicht surjektiv ⇒ w nicht bijektiv

2. f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \to y = f(x) = -x$
 f injektiv, f surjektiv \Rightarrow f bijektiv

3. f:
$$\mathbb{R} \to \mathbb{R}_0^+$$
 $x \to y = f(x) = x^2$ f nicht injektiv, f surjektiv \Rightarrow f nicht bijektiv

4. f:
$$\mathbb{R}_0^+ \to \mathbb{R}$$

$$x \to y = f(x) = x^2$$
 f injektiv, f nicht surjektiv \Rightarrow f nicht bijektiv

5. f:
$$\mathbb{R}_0^+ \to \mathbb{R}_0^+$$
 $x \to y = f(x) = x^2$ f injektiv, f surjektiv \Rightarrow f bijektiv

Umkehrfunktion

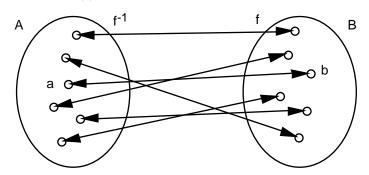
Def.: Gegeben sei die bijektive Funktion

f:
$$A \rightarrow B$$

 $a \rightarrow b = f(a)$

Die **Umkehrfunktion** f^{-1} ordnet jedem Element $b \in B$ dasjenige Element $a \in A$ zu, welches durch die Funktion f dem Element $b \in B$ zugeordnet wird.

$$f^{-1}$$
: $B \rightarrow A$
 $b \rightarrow a = f^{-1}(b)$



Bsp.: 1. Ausverkauftes Kino

A = Menge aller Kinobesucher

B = Menge aller Sitzplätze

f:
$$A \rightarrow B$$

$$x \rightarrow y = f(x) = Sitzplatz von Kinobesucher x$$

f⁻¹: B
$$\rightarrow$$
 A
y \rightarrow x = f⁻¹(y) = Kinobesucher auf Sitzplatz y

2.
$$A = \mathbb{Z}$$

$$B = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}$$

f:
$$A \rightarrow B$$

 $x \rightarrow y = f(x) = 2x$

$$f^{-1}$$
: $B \rightarrow A$
 $y \rightarrow x = f^{-1}(y) = \frac{1}{2}y$

3. f:
$$\mathbb{R}_0^+ \to \mathbb{R}_0^+$$

 $x \to y = f(x) = x^2$

$$\begin{array}{ccc} f^{\text{-}1} \colon & & \mathbb{R}_0^{\,+} \to & \mathbb{R}_0^{\,+} \\ & y & \to & x = f^{\text{-}1}(y) = \sqrt{y} \end{array}$$

Def.: Die **identische Abbildung/Funktion** 1 ist definiert durch:

1:
$$A \rightarrow A$$

 $x \rightarrow y = 1(x) = x$

Bem.:
$$f^{-1} \circ f = f \circ f^{-1} = 1$$