Aufgaben-Hinweise Schwingungslehre (Skriptum, Abschnitt 6.5, Seite 44)

- Schwingungsdauer T = 1 s
 Frequenz f = 1 Hz
 Gravitationsfeldstärke g = 9.81 N/kg
- 2. b) Es ist zu beurteilen, ob die Abklingkonstante δ grösser, gleich gross oder kleiner als die Eigenkreisfrequenz ω_0 des ungedämpften Pendels ist.
 - d) Die Bedingung x(0 s) = 0.6 m muss in die in c) bestimmte Schwingungsgleichung x = ... eingesetzt werden. Dies führt auf die Gleichung

 $A \cdot \sin(\varphi) = 0.6 \text{ m} \tag{I}$

Für die Bedingung $\dot{x}(0\;s)=0\;m/s$ muss die in c) bestimmte Schwingungsgleichung x=... zuerst abgeleitet werden. Man erhält $\dot{x}=A\;e^{-4/s\cdot t}\left(-\frac{4}{s}\sin\left(\frac{3}{s}t+\phi\right)+\frac{3}{s}\cos\left(\frac{3}{s}t+\phi\right)\right)$. Setzt man die Bedingung $\dot{x}(0\;s)=0\;m/s$ ein, erhält man die Gleichung

 $A\left(-\frac{4}{s}\sin(\varphi) + \frac{3}{s}\cos(\varphi)\right) = 0 \text{ m/s} \quad (II)$

Die beiden Gleichungen (I) und (II) bilden ein Gleichungssystem für die unbekannten Grössen A und ϕ .

Die Gleichung (II) lässt sich über den $tan(\phi)$ nach ϕ lösen.

3. Zur Bestimmung der Abklingkonstante δ muss man den exponentiellen Abfall der Amplitude betrachten. Aus der Schwingungsgleichung ist ersichtlich, dass die Amplitude A·e^{- δ t} beträgt.

Während der ersten vollen Schwingung fällt die Amplitude gemäss Skizze von 1.7 cm (t = 0 s) auf 0.9 cm (t = 3.2 s) ab. Es gilt also $A \cdot e^{-\delta 0 s} = A = 1.7$ cm und $A \cdot e^{-\delta 3.2 s} = 0.9$ cm

Durch Logarithmieren lässt sich die Abklingkonstante δ bestimmen.

Mit den für A, T, ω , δ und ω_0 ermittelten Werten ergibt sich die folgende Schwingungsgleichung:

 $x = 1.7 \text{ cm} \cdot e^{-0.199/s \cdot t} \cdot \cos(1.96/s \cdot t)$

4. Aus den Grössen m, D und β können die Eigenkreisfrequenz $ω_0$ und die Abklingkonstante δ ermittelt werden.

Für die Resonanzfrequenz gilt $\omega_{res} = \sqrt{\omega_0^2 - 2\delta^2}$

5. Im aperiodischen Grenzfall muss gelten: $\delta = \omega_0$

Sowohl δ als auch ω_0 hängen von der Pendelmasse m ab.