
Aufgaben 13 Ableitung Ableitung (Änderungsrate), Ableitung (Ableitungsfunktion) einer konstanten Funktion/Potenz-/Exponentialfunktion

Lernziele

- eine Ableitung (Änderungsrate) einer Funktion aus dem Grafen der Funktion abschätzen können.
- eine Ableitung (Änderungsrate) einer konstanten und einer linearen Funktion angeben können.
- die Ableitung (Ableitungsfunktion) einer konstanten und einer linearen Funktion bestimmen können.
- die Ableitung (Ableitungsfunktion) einer elementaren Polynomfunktion und einer elementaren Exponentialfunktion bestimmen können.
- eine Ableitung (Änderungsrate) einer elementaren Polynomfunktion und einer elementaren Exponentialfunktion bestimmen können.

Aufgaben

13.1 Gegeben ist der Graf einer Funktion f:

Schätzen Sie die Ableitung (Änderungsrate) $f'(x_0)$ an der gegebenen Stelle x_0 ab:

a)
$$x_0 = -1$$

b)
$$x_0 = 0$$

c)
$$x_0 = 1$$

d)
$$x_0 = -2$$

Hinweise:

- Zeichnen Sie die Tangente an den Grafen von f an der gegebenen Stelle x_0 .
- Wählen Sie zwei beliebige Punkte auf der Tangente, und schätzen Sie ihre Koordinaten ab.
- Bestimmen Sie die Steigung der Tangente mit Hilfe der abgeschätzten Koordinaten der beiden Punkte.

b)

Digital	Business	Aufgaben 13 – 2022					
13.2	Bearbeiten Sie für jede der folgenden Funktionen f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x) =$ die folgenden Teilaufgaben:						
	i)						
	ii)	<u>.</u>					
	a)	f(x) =	= 3		$x_0 = 2$		
	b)	f(x) =	$= c \ (c \in \mathbb{R})$		irgendein $x_0 \in \mathbb{R}$		
	c)	f(x) =	= 2x - 3		$x_0 = 4$		
	d)	f(x) =	$= mx + q \ (m \in \mathbb{R}$	$\mathbb{R}\setminus\{0\},q\in\mathbb{R}$	irgendein $x_0 \in \mathbb{R}$		
		nn der Gi			ade ist, dann ist die A elle x ₀ gleich gross, l		derungsrate) f'(x_0) die Steigung t von x_0 ab.
13.3	Bestimmen Sie f'(x):						
	a)	f(x) =	= 3	b)	f(x) = 0	c)	f(x) = -1
	d)	$f(x) = x^3$		e)	$f(x) = x^4$	f)	$f(x) = x^5$
	g)	$f(x) = x^{17}$		h)	$f(x) = x^{200}$	i)	$f(x) = x^{1000001}$
	j)	f(x) =	$= \mathbf{x}^{-1}$	k)	$f(x) = x^{-2}$	1)	$f(x) = x^{-17}$
	m)	f(x) =	$=\frac{1}{x}$	n)	$f(x) = \frac{1}{x^3}$	o)	$f(x) = \frac{1}{x^{99}}$
	p)	$f(x) = 3^x$		q)	$f(x) = 5^x$	r)	$f(x) = \left(\frac{2}{3}\right)^x$
13.4	Bestimmen Sie die Ableitung (Änderungsrate) $f'(x_0)$ der Funktion f an der angegebenen Stelle x_0 :						
	a)	f(x) =					
			$\mathbf{x}_0 = 0$	ii)	$x_0 = 1$	iii)	$x_0 = -2$
	b)	f(x) =	$=\mathbf{x}^5$				
		i)	$x_0 = 0$	ii)	$x_0 = 2$	iii)	$\mathbf{x}_0 = -\frac{2}{3}$
	c)	f(x) =	$f(x) = x^{-4}$				
		i)	$x_0 = -1$	ii)	$\mathbf{x}_0 = -\frac{4}{3}$	iii)	$\mathbf{x}_0 = 0$
	d)	$f(x) = \left(\frac{2}{3}\right)^x$					
		i)	$\mathbf{x}_0 = 0$	ii)	$x_0 = 1$	iii)	$x_0 = -2$
13.5			ie, welche Aussabe a) bis c) ist			ızen Sie das en	tsprechende Kästchen an.

a)

Die Ableitung (Änderungsrate) einer Funktion f an der Stelle x_0 ist eine reelle Zahl. ... eine Funktion. ... eine Tangente. ... ein Graf. (siehe nächste Seite)

b) Die Ableitung (Ableitungsfunktion) f' einer Funktion f ist ...
... eine reelle Zahl.
... eine Funktion.
... eine Tangente.
... ein Graf.
c) f'(x₀) ist die Steigung der ...
... Sekante durch die Punkte (0|0) und (x₀|f(x₀)).
... Sekante durch die Punkte (x₀+Δx|f(x₀+Δx)) und (x₀|f(x₀)).

... Tangente an den Grafen von f durch $(x_0|f(x_0))$ Tangente an den Grafen von f' durch $(x_0|f(x_0))$.

 $f'(x) = -17x^{-18}$

Lösungen

13.1 $f'(-1) \approx 0$

> $f'(0) \approx 2$ b)

- $f'(1) \approx \frac{3}{2}$ c)
- $f'(-2) \approx -\frac{5}{3}$ d)

13.2 a) i)

> f'(2) = 0ii)

b) i)

> $f'(x_0) = 0$ an jeder Stelle x₀ ii)

c) i)

> ii) f'(4) = 2

 $f'(x) = -x^{-2}$

j)

d) i)

> ii) $f'(x_0) = m$ an jeder Stelle x₀

13.3 f'(x) = 0f'(x) = 0f'(x) = 0c)

k)

 $f'(x) = 3x^2$ $f'(x) = 4x^3$ f) d) e) $f'(x) = 5x^4$

 $f'(x) = 17x^{16}$ $f'(x) = 200x^{199}$ $f'(x) = 100'001x^{100'000}$ h) g) $f'(x) = -2x^{-3}$

o) $f'(x) = -\frac{99}{x^{100}}$ $f'(x) = -\frac{1}{x^2}$ $f'(x) = -\frac{3}{x^4}$ m) n)

 $f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$ $f'(x) = 3^x \ln(3)$ $f'(x) = 5^x \ln(5)$ p) q) r)

13.4 a) f'(x) = 1i) f'(0) = 1f'(-2) = 1ii) f'(1) = 1iii)

b) $f'(x) = 5x^4$

 $f'\left(-\frac{2}{3}\right) = \frac{80}{81}$ f'(0) = 0ii) f'(2) = 80iii)

 $f'(x) = -\frac{4}{x^5}$ c)

 $f'\left(-\frac{4}{3}\right) = \frac{243}{256}$ f'(-1) = 4ii) iii) f'(0) ist nicht definiert (Division durch null)

 $f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$ d) ii) $f'(1) = \frac{2}{3} \ln(\frac{2}{3})$ $f'(-2) = \frac{9}{4} \ln(\frac{2}{3})$ $f'(0) = \ln(\frac{2}{3})$ iii)

13.5 a) 1. Aussage

> b) 2. Aussage

c) 3. Aussage