Aufgaben 15 Anwendungen der Differentialrechnung Lokale/Globale Maxima/Minima, Wendepunkte, Betriebsoptimum

Lernziele

- die lokalen Maxima und Minima einer Funktion bestimmen können.
- die Wendepunkte einer Funktion bestimmen können.
- das globale Maximum und das globale Minimum einer Kosten-, Ertrags- und Gewinnfunktion bestimmen können.
- das globale Minimum einer Durchschnittskostenfunktion bestimmen können.
- das Betriebsoptimum bei Produktion und Verkauf einer Ware oder einer Dienstleistung bestimmen können.

Aufgaben

- 15.1 Bestimmen Sie für jede Funktion ...
 - i) ... die lokalen Maxima und Minima.
 - ii) ... die Wendepunkte.
 - a) $f(x) = x^2 4$
 - b) $f(x) = -8x^3 + 12x^2 + 18x$
 - c) $s(t) = t^4 8t^2 + 16$
 - $f(x) = x e^{-x}$
 - e) * $f(x) = (1 e^{-2x})^2$
 - f) * $V(r) = -D\left(\frac{2a}{r} \frac{a^2}{r^2}\right)$ (D > 0, a > 0)
- 15.2 Angenommen, der Gesamtgewinn bei der Herstellung und dem Verkauf einer Ware beträgt

$$G(x) = (2000x + 20x^2 - x^3)$$
 CHF

wobei x die verkaufte Stückzahl ist.

Bestimmen Sie die Stückzahl x bei maximalem Gewinn, und bestimmen Sie den maximalen Gewinn.

Hinweise:

- Bestimmen Sie zuerst die lokalen Maxima.
- Prüfen Sie dann nach, ob eines der lokalen Maxima das globale Maximum ist.
- 15.3 Angenommen, die Gesamtkosten für eine Dienstleistung im Zusammenhang mit einem Digitalisierungs-Projekt sind gegeben durch

$$K(x) = (\frac{1}{4}x^2 + 4x + 100) \cdot 100 \text{ CHF}$$

wobei x ein Mass für den Umfang der Dienstleistung ist. Welcher Wert für x führt zu minimalen Durchschnittskosten? Bestimmen Sie die minimalen Durchschnittskosten.

15.4 Angenommen, die Produktionskapazität für eine bestimmte Ware kann 30 nicht überschreiten. Der Gesamtgewinn dieser Firma ist

$$G(x) = (4x^3 - 210x^2 + 3600x)$$
 CHF

wobei x die verkaufte Stückzahl ist. Bestimmen Sie die Stückzahl x, welche den Gewinn maximiert.

15.5 (siehe nächste Seite)

15.5 Angenommen, der jährliche Gewinn eines Geschäfts ist gegeben	en durch
---	----------

$$G(x) = (-0.1x^3 + 3x^2) \cdot 1000 \text{ CHF}$$

wobei x die Anzahl Jahre nach 2010 ist. Bestimmen Sie für diese Modellannahme den Wendepunkt für den Gewinn.

- 15.6 Bei der Herstellung und dem Verkauf einer Ware sei Folgendes bekannt:
 - Die Kostenfunktion K(x) ist quadratisch, d.h. $K(x) = ax^2 + bx + c$
 - Die Fixkosten betragen 1000 GE (= Geldeinheiten)
 - Bei 400 ME (= Mengeneinheiten) betragen die Gesamtkosten 25'000 GE.
 - Bei 400 ME betragen die Grenzkosten 100 GE/ME.

Bestimmen Sie ...

- a) ... die Betriebskostenfunktion K(x), d.h. die unbekannten Koeffizienten a, b und c.
- b) ... das Betriebsoptimum, d.h. sowohl die Menge x als auch die Stückkosten \overline{K} beim Betriebsoptimum.
- c) ... den kostendeckenden Preis p beim Betriebsoptimum.

Hinweis:

- Lassen Sie bei Ihren Berechnungen der Einfachheit halber die Einheiten ME und GE weg.
- 15.7 Bei der Produktion eines Artikels der TUFEX AG werden die Gesamtkosten pro Tag in Abhängigkeit von der Ausbringungsmenge x festgelegt durch K(x) = (0.125 x² + 1.5 x + 200) €. Überdies hat der Betrieb einen konstanten Verkaufspreis von 14 € geplant.

Bestimmen Sie rechnerisch, ...

- a) ... für welche Stückzahlen der Erlös (Ertrag) und die Gesamtkosten gleich gross sind.
- b) ... für welche Stückzahl der Gewinn am grössten ist.
- c) ... wie gross dieser maximale Gewinn ist.
- 15.8 Entscheiden Sie, welche Aussagen wahr oder falsch sind. Kreuzen Sie das entsprechende Kästchen an. In jeder Aufgabe a) bis c) ist genau eine Aussage wahr.

a)	Falls f ein lokales	Maximum	hei $y = y_0$ hat	kann gefolgert	werden dass
a	raiis i ein iokales	Maxilliulli	bei $x - x_0$ nat	, kann geroigen	werden, dass

	$f(x_0) > f(x)$ für alle x in einer gewissen Umgebung von x_0
b)	Falls $f(x_0) < 0$, $f'(x_0) = 0$ und $f''(x_0) \neq 0$, kann gefolgert werden, dass $f \dots$
	kein lokales Minimum bei $x = x_0$ hat. kein lokales Maximum bei $x = x_0$ hat. keinen Wendepunkt bei $x = x_0$ hat. einen Wendepunkt bei $x = x_0$ hat.
c)	Das globale Maximum einer Funktion
	ist immer ein lokales Maximum kann ein lokales Minimum sein.

... kann ein lokales Maximum sein.

... existiert immer.