Aufgaben 16 **Unbestimmtes Integral** Stammfunktion, Unbestimmtes Integral, Faktor-/Summenregel

Lernziele

- eine Stammfunktion und das unbestimmte Integral einer konstanten Funktion, einer elementaren Potenzfunktion und einer elementaren Exponentialfunktion bestimmen können.
- die Faktor- und Summenregel anwenden können, um das unbestimmte Integral einer Funktion bestimmen zu können.
- die Kosten-, Ertrags- und Gewinnfunktion bestimmen können, wenn die Grenzkosten-, Grenzertrags- und die Grenzgewinnfunktion bekannt ist.

Aufgaben

16.1 Bestimmen Sie die folgenden unbestimmten Integrale:

 $\int x^2 dx$

 $\int x^3 dx$

 $\int x^{-5} dx$ c)

 $\int \frac{1}{x^2} dx$ d)

 $\int \frac{1}{x^4} dx$ e)

f) $\int 4 dx$

 $\int (-7) dx$ g)

 $\int e^x dx$ h)

 $\int e^{3x} dx$ i)

 $\int e^{-x} dx$ j)

16.2 Bestimmen Sie das unbestimmte Integral der folgenden Funktionen f:

> a) $f(x) = x^5$

 $f(x) = 3x^2$

 $f(x) = x^3 + 2x^2 - 5$ c)

d) $f(x) = \frac{x^5}{2} - \frac{2}{3x^2}$

 $f(x) = \frac{1}{2}x^3 - 2x^2 + 4x - 5$ f) $f(x) = x^{10} - \frac{1}{2}x^3 - x$

Bestimmen Sie die Funktionsgleichungen jener beiden Stammfunktionen F₁ und F₂ von f, welche die 16.3 genannten Bedingungen erfüllen.

 $f(x) = 10x^2 + x$ $F_1(0) = 3$ a)

 $F_2(0) = -1$

 $f(x) = x^3 + 3x + 1$ $F_1(2) = 5$

 $F_2(4) = -8$

16.4 Angenommen, wir kennen die Funktionsgleichung der Ableitung f' einer Funktion f:

$$f'(x) = 3x^2 - 50x + 250$$

Bestimmen Sie die Funktionsgleichung der Funktion f, falls ...

... f(0) = 500. a)

... f(10) = 2500. b)

16.5 Angenommen, wir kennen die Funktionsgleichung der zweiten Ableitung f " einer Funktion f:

$$f''(x) = 2x - 1$$

Bestimmen Sie die Funktionsgleichung der Funktion f, so dass f'(2) = 4 und f(1) = -1.

16.6 Angenommen, die monatlichen Grenzkosten für ein Produkt sind K'(x) = (2x + 100) CHF, und die Fixkosten betragen 200 CHF. Bestimmen Sie die Gesamtkostenfunktion für einen Monat.

16.7	Angenommen, die Grenzkosten für ein Produkt sind $K'(x) = (4x + 2)$ CHF, und die Produktion von 10
	Einheiten ergeben Gesamtkosten von 300 CHF. Bestimmen Sie die Gesamtkostenfunktion.

- Angenommen, die Grenzkosten für ein Produkt sind K'(x) = (4x + 40) CHF, und die Gesamtkosten für die Produktion von 25 Einheiten betragen 3000 CHF. Wie hoch sind die Gesamtkosten für 30 Einheiten?
- 16.9 Eine Firma weiss, dass die Grenzkosten für ein Produkt K'(x) = (3x + 20) CHF sind und dass der Grenzertrag E'(x) = (-5x + 44) CHF ist. Die Gesamtkosten für die Produktion und den Verkauf von 10 Einheiten betragen 370 CHF.

Bestimmen Sie ...

- a) ... die Gewinnfunktion G(x).
- b) ... die Anzahl Einheiten, welche zu einem maximalen Gewinn führen.

Hinweis:

- Der Ertrag ist null, falls keine Einheit verkauft wird, also E(0) = 0 CHF.
- 16.10 Angenommen, der Grenzertrag E'(x) und die Ableitung der Durchschnittskosten $\overline{K}'(x)$ eines Unternehmens lauten wie folgt:

$$E'(x) = 400 \text{ CHF}$$

$$\overline{K}'(x) = \left(\frac{2}{15}x - 11 - \frac{10'000}{x^2}\right) CHF$$

Aus der Produktion von 15 Einheiten resultieren Gesamtkosten von 16'750 CHF.

Bestimmen Sie

- a) ... die Gewinnfunktion G(x).
- b) ... die Anzahl Einheiten, welche zu einem maximalen Gewinn führen.
- c) ... den maximalen Gewinn.
- 16.11 Entscheiden Sie, welche Aussagen wahr oder falsch sind. Kreuzen Sie das entsprechende Kästchen an. In jeder Aufgabe a) bis c) ist genau eine Aussage wahr.

a)	Eine Stammfunktion einer Funktion ist
	eine reelle Zahl eine Funktion eine Menge von Funktionen ein Graf.
b)	Das unbestimmte Integral einer Funktion ist
	eine reelle Zahl eine Funktion eine Menge von Funktionen ein Graf.
c)	Falls $f = g'$, dann ist
	f eine Stammfunktion von g g eine Stammfunktion von f f das unbestimmte Integral von g.

... g das unbestimmte Integral von f.

Lösungen

16.1 a)
$$\int x^2 dx = \frac{1}{2}x^3 + C$$
 b) $\int x^3 dx = \frac{1}{4}x^4 + C$

c)
$$\int x^{-5} dx = -\frac{1}{4x^4} + C$$
 d) $\int \frac{1}{x^2} dx = -\frac{1}{x} + C$

e)
$$\int \frac{1}{x^4} dx = -\frac{1}{3x^3} + C$$
 f) $\int 4 dx = 4x + C$

g)
$$\int (-7) dx = -7x + C$$
 h) $\int e^x dx = e^x + C$

i)
$$\int e^{3x} dx = \frac{1}{3}e^{3x} + C$$
 j) $\int e^{-x} dx = -e^{-x} + C$

16.2 a)
$$\int f(x) dx = \int x^5 dx = \frac{1}{6}x^6 + C$$

b)
$$\int f(x) dx = \int 3x^2 dx = x^3 + C$$

c)
$$\int f(x) dx = \int (x^3 + 2x^2 - 5) dx = \frac{1}{4}x^4 + \frac{2}{3}x^3 - 5x + C$$

d)
$$\int f(x) dx = \int \left(\frac{1}{2}x^5 - \frac{2}{3x^2}\right) dx = \frac{1}{12}x^6 + \frac{2}{3x} + C$$

e)
$$\int f(x) dx = \int \left(\frac{1}{2}x^3 - 2x^2 + 4x - 5\right) dx = \frac{1}{8}x^4 - \frac{2}{3}x^3 + 2x^2 - 5x + C$$

f)
$$\int f(x) dx = \int \left(x^{10} - \frac{1}{2}x^3 - x\right) dx = \frac{1}{11}x^{11} - \frac{1}{8}x^4 - \frac{1}{2}x^2 + C$$

16.3 a)
$$F_1(x) = \frac{10}{3} x^3 + \frac{1}{2} x^2 + 3$$
 $F_2(x) = \frac{10}{3} x^3 + \frac{1}{2} x^2 - 1$

b)
$$F_1(x) = \frac{1}{4}x^4 + \frac{3}{2}x^2 + x - 7$$
 $F_2(x) = \frac{1}{4}x^4 + \frac{3}{2}x^2 + x - 100$

Hinweise:

- Bestimmen Sie zuerst das unbestimmte Integral von f.
- Bestimmen Sie dann den Wert der Integrationskonstante, so dass die genannten Bedingungen erfüllt sind.

16.4 a)
$$f(x) = x^3 - 25x^2 + 250x + 500$$

b)
$$f(x) = x^3 - 25x^2 + 250x + 1500$$

16.5 a)
$$f'(x) = x^2 - x + 2$$

b)
$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + 2x - \frac{17}{6}$$

16.6
$$K(x) = (x^2 + 100x + 200)$$
 CHF

Hinweise:

- Integrieren Sie zuerst die Grenzkostenfunktion $K'(x) \Rightarrow K(x) = (x^2 + 100x + C)$ CHF $(C \in \mathbb{R})$
- Bestimmen Sie die Integrationskonstante C, indem Sie die Bedingung K(0) = 200 CHF berücksichtigen \Rightarrow C = 200

16.7
$$K(x) = (2x^2 + 2x + 80)$$
 CHF

$$16.8 K(30) = 3750 CHF$$

Hinweis:

- Bestimmen Sie zuerst die Gesamtkostenfunktion $K(x) \Rightarrow K(x) = (2x^2 + 40x + 750)$ CHF.

16.9 a)
$$G(x) = (-4x^2 + 24x - 20)$$
 CHF

Hinweise:

- Bestimmen Sie zuerst die Gesamtkostenfunktion K(x) und die Ertragsfunktion E(x).

$$\Rightarrow K(x) = \left(\frac{3}{2}x^2 + 20x + 20\right) CHF$$
$$E(x) = \left(-\frac{5}{2}x^2 + 44x\right) CHF$$

- Bestimmen Sie dann die Gewinnfunktion G(x).
- b) 3 Einheiten

Hinweise:

- Die Gewinnfunktion G(x) ist eine quadratische Funktion.
- Denken Sie an den Grafen der Gewinnfunktion, wenn Sie das globale Maximum bestimmen.

16.10 a)
$$G(x) = \left(-\frac{1}{15}x^3 + 11x^2 - 200x - 10'000\right)$$
 CHF

Hinweise:

- Bestimmen Sie zuerst die Ertragsfunktion $E(x) \Rightarrow E(x) = 400x$ CHF
- Bestimmen Sie dann die Durchschnittskostenfunktion $\overline{K}(x)$

$$\Rightarrow \overline{K}(x) = \left(\frac{1}{15}x^2 - 11x + \frac{10'000}{x} + C\right) \text{CHF}$$

- Bestimmen Sie dann die Gesamtkostenfunktion K(x)

$$\Rightarrow K(x) = \left(\frac{1}{15}x^3 - 11x^2 + 600x + 10'000\right) CHF$$

- Bestimmen Sie schliesslich die Gewinnfunktion $G(x) \Rightarrow G(x) = E(x) K(x) = ...$
- b) 100 Einheiten

Hinweise:

- Bestimmen Sie die lokalen Maxima der Gewinnfunktion G(x).
- Prüfen Sie nach, ob eines der lokal Maxima das globale Maximum ist.
- c) $G_{\text{max}} = G(100) = 13'333 \text{ CHF (gerundet)}$
- 16.11 a) 2. Aussage
 - b) 3. Aussage
 - c) 2. Aussage