Repetitions-Aufgaben 1 Funktionen und Gleichungen

Aufgaben

- R1.1 Welche der folgenden Zuordnungen sind Funktionen? Begründen Sie Ihre Antworten.
 - a) $f_1: \mathbb{R}_0^+ \to \mathbb{R}^+, x \mapsto y = f_1(x) = \sqrt{x}$
 - b) $f_2: \{2, 3, 4, ...\} \rightarrow \mathbb{N}, x \mapsto y = f_2(x) = x 1$
 - c) D = Menge aller Schweizer Kantone<math>B = Menge aller Schweizer Dörfer und Städte $<math>f_3 : D \rightarrow B, x \mapsto y = f_3(x) = Hauptort von x$
 - d) $f_4: \{x: x \in \mathbb{R} \text{ und } x \ge 3\} \to \mathbb{R}, x \mapsto y = f_4(x) = \frac{1}{x^2 9}$
 - e) $f_5: \mathbb{R}_0^+ \to \mathbb{R}, x \mapsto y = f_5(x) = \log_a(x)$
- R1.2 Falls $f(x) = 9x x^2$, bestimmen Sie ...
 - a) ... f(0).
 - b) ... f(-3).
 - c) ... $\frac{f(x+h) f(x)}{h}$ und vereinfachen Sie den Ausdruck.
- R1.3 Lösen Sie die folgenden Gleichungen, und geben Sie die Lösungsmengen an:
 - a) 3x 8 = 23
 - b) $\frac{6}{3x-5} = \frac{6}{2x+3}$
 - c) $\frac{2x+5}{x+7} = \frac{1}{3} + \frac{x-11}{2x+14}$
- R1.4 Lösen Sie die folgenden Gleichungen nach x, und geben Sie die Lösungsmengen an. Berücksichtigen Sie dabei, dass die Parameter a und p beliebige reelle Zahlen sein können.
 - a) ax = 60
 - b) $(p-1)px = p^2 1$
- R1.5 Lösen Sie die folgenden Gleichungssysteme, und geben Sie die Lösungsmengen an:
 - a) 2x + y = 19x - 2y = 12
 - b) 6x + 3y = 1y = -2x + 1
- R1.6 Bestimmen Sie die Funktionsgleichung der linearen Funktion, deren Graf ...
 - a) ... die Steigung 4 und den Achsenabschnitt 2 hat.
 - b) ... durch den Punkt (-2|1) verläuft und die Steigung $\frac{2}{5}$ hat.
 - c) ... (siehe nächste Seite)

- c) ... durch die Punkte (-2|7) und (6|-4) verläuft.
- d) ... durch den Punkt (1|6) verläuft und parallel ist zu y = 4x 6.
- R1.7 Ein bestimmtes Produkt hat die folgenden Angebots- und Nachfragefunktionen:

$$p = f_A(q) = (4q + 5) \text{ CHF}$$

 $p = f_N(q) = (-2q + 81) \text{ CHF}$

- a) Angenommen, der Preis beträgt 53 CHF. Welche Menge wird dann angeboten und welche wird nachgefragt?
- b) Bestimmen Sie sowohl die Gleichgewichtsmenge als auch den Gleichgewichtspreis.
- R1.8 Gesamtkosten K(x) und Ertrag E(x) sind für ein bestimmtes Produkt wie folgt gegeben:

$$K(x) = (38.80x + 4500)$$
 CHF
 $E(x) = 61.30x$ CHF

- a) Bestimmen Sie die Fixkosten.
- b) Bestimmen Sie die variablen Kosten für die Fertigung von 10 Stück.
- c) Bestimmen Sie, welche Anzahl gefertigt werden muss, um die Gewinnschwelle zu erreichen.
- R1.9 Die Angebots- und die Nachfragefunktion für ein Produkt seien linear und durch die untenstehenden Tabellen bestimmt. Bestimmen Sie Menge und Preis bei Marktgleichgewicht.

Angebotsfunktion		Nachfragefunktion	
Preis	Menge	Preis	Menge
100 CHF	200	200 CHF	200
200 CHF	400	100 CHF	400
300 CHF	600	0 CHF	600

- R1.10 Bestimmen Sie die Lösungsmengen der folgenden Gleichungen:
 - a) $4x 3x^2 = 0$
 - b) $3x^2 6x = 9$
 - c) $4x^2 + 25 = 0$
 - d) $\frac{1}{x} + 2x = \frac{1}{3} + \frac{x+1}{x}$
 - e) $\frac{x-4}{x-5} = \frac{30-x^2}{x^2-5x}$
- R1.11 Bestimmen Sie die Funktionsgleichung der quadratischen Funktion, deren Graf ...
 - a) ... den Scheitelpunkt (2|4) hat und durch (3|3) verläuft.
 - b) ... durch (-3|-3), (0|3) und (3|0) verläuft.
- R1.12 Die Angebotsfunktion für ein Produkt ist gegeben durch $p = q^2 + 300$ und die Nachfragefunktion durch p + q = 410. Bestimmen Sie die Gleichgewichtsmenge und den Gleichgewichtspreis.
- R1.13 (siehe nächste Seite)

- R1.13 Angenommen, die Gesamtkosten K(x) für eine Dienstleistung seien gegeben durch $K(x) = (1760 + 8x + 0.6x^2)$ CHF und der Ertrag E(x) durch $E(x) = (100x 0.4x^2)$ CHF. Bestimmen Sie die Gewinnschwellen.
- R1.14 Bestimmen Sie die Funktionsgleichung der Exponentialfunktion, deren Graf durch die Punkte P und Q verläuft.
 - a) P(0|1) Q(2|9)
 - b) P(1|20) Q(2|100)
- R1.15 Berechnen Sie die folgenden Logarithmen ohne Taschenrechner:
 - a) $\log_5(1)$
 - b) $\log_2(8)$
 - c) $\log_3\left(\frac{1}{3}\right)$
 - d) $\log_3(3^8)$
 - e) $e^{\ln(5)}$
 - f) $10^{\lg(3.15)}$
- R1.16 Angenommen, 8000 CHF werden bei einfacher Verzinsung und einem Zinssatz von 12% 3 Jahre lang ausgeliehen. Bestimmen Sie den Wert der Anleihe nach Ablauf der 3 Jahre.
- R1.17 Maria hat sich von ihren Eltern 2000 CHF ausgeliehen und ihnen nach 9 Monaten 2100 CHF zurückgezahlt. Welchen Zinssatz hat Mary unter der Annahme einfacher Verzinsung gezahlt?
- R1.18 Welchen Betrag an Sommerverdienst muss ein Student am 31. August einzahlen, um am 31. Dezember des gleichen Jahres über 3000 CHF für Studiengebühren zu verfügen, falls das Geld zu 6% und einfacher Verzinsung angelegt ist?
- R1.19 Angenommen, 1000 CHF werden 4 Jahre lang zu einem Zinssatz von 8% und einer vierteljährlichen Verzinsung angelegt. Wieviel Zins trägt das Geld in dieser Zeit?
- R1.20 Wieviel muss man jetzt investieren, um in 4 Jahren 18'000 CHF zu haben, falls die Investition monatlich zu einem Jahreszinssatz von 5.4% verzinst wird?
- R1.21 Im Jahr 2010 hatte ein afrikanisches Land 4.5 Millionen Einwohner. Die Bevölkerung ist seither 4% pro Jahr gewachsen. Wie gross wird die Bevölkerung im Jahr 2030 sein, wenn sich der Wachstumsfaktor nicht verändert?
- R1.22 Ein Unternehmen möchte in 4 1/2 Jahren 250'000 CHF für Investitionen zur Verfügung haben. Wieviel muss zu Beginn jedes Quartals einbezahlt werden, um dieses Ziel zu erreichen, falls das investierte Geld vierteljährlich zu einem Jahreszinssatz von 10.2% verzinst wird?
- R1.23 (siehe nächste Seite)

- R1.23 Ein Altersvorsorgekonto mit halbjährlicher Verzinsung zu 6.8% (Jahreszinssatz) enthält 488'000 CHF. Wie lange können am Ende jedes Halbjahres 40'000 CHF abgehoben werden bis der Kontostand 0 CHF ist?
- R1.24 In 3 Jahren möchte ein Paar eine 4-monatige Reise nach China, Japan und Südostasien antreten Ab Reisebeginn möchten sie jeweils zu Monatsbeginn 5000 CHF abheben, um die Reisekosten für den entsprechenden Monat bezahlen zu können. Wieviel müssen sie ab jetzt 3 Jahre lang zu Beginn jedes Monats einzahlen, damit bei Reisebeginn genügend Geld auf dem Konto liegt? Es wird angenommen, dass das Konto monatlich verzinst wird bei einem Jahreszinssatz von 6.6%.
- R1.25 Herr S. muss seiner geschiedenen Frau 8 Jahr lang am Ende jedes Jahres 25'000 CHF bezahlen. Aufgrund eines privaten Gewinns in seiner Firma ist er in der Lage, die ganze Summe bereits am Ende des ersten Jahres zu bezahlen (statt in 8 Raten am Ende jedes Jahres). Welchen Betrag muss er am Ende des ersten Jahres bezahlen, falls ein Jahreszinssatz von 4.5% vereinbart wurde?
- R1.26 Herr P. denkt über eine Anlage für seine Altersvorsorge nach. Er möchte ab dem Jahr, in welchem er 60 Jahre alt wird, 15 Jahre lang jeweils am Jahresende von einem Konto 8000 CHF abheben können. Er nimmt an, dass der Jahreszinssatz während dieser 15 Jahre 2.5% betragen wird.
 - a) Herr P. möchte das Geld sparen, indem er 30 gleiche Raten am Ende jedes Jahres einzahlt, und zwar bis zum Jahr, in welchem er 55 Jahre alt wird. Wieviel muss er jedes Jahr einzahlen, falls das Geld jährlich zu einem Zinssatz von 3% verzinst wird?
 - b) Herr P. hat im Lotto 40'000 CHF gewonnen! Würde dieses Geld für seine Altersvorsorge reichen, wenn er es am Ende des Jahres, in welchem er 25 Jahre alt wird, einzahlen würde? Nehmen Sie den gleichen Zinssatz an wie in a).

Lösungen

R1.1 a) keine Funktion

f ist nicht definiert für x = 0 (obwohl $0 \in \mathbb{R}_0^+$), da $y = f(0) = 0 \notin \mathbb{R}^+$

- b) Funktion
- c) Funktion
- d) keine Funktion

f ist nicht definiert für x = 3.

e) keine Funktion

f ist nicht definiert für x = 0.

Hinweise:

- Eine Funktion muss für jedes Element der Definitionsmenge definiert sein.
- Eine Funktion muss eindeutig sein, d.h. jedem Element der Definitionsmenge wird nur ein Element (nicht mehrere Elemente) der Zielmenge zugeordnet.

R1.2 a)
$$f(0) = 0$$

- b) f(-3) = -36
- c) $f(x+h) = 9(x+h) (x+h)^{2}$ $\frac{f(x+h) f(x)}{h} = 9 2x h$

R1.3 a)
$$L = \left\{ \frac{31}{3} \right\}$$

b) $L = \{8\}$

Hinweis:

- Bringen Sie zuerst die Brüche weg, indem Sie mit dem kleinsten gemeinsamen Vielfachen der Nenner multiplizieren.

c)
$$L = \{\}$$

Hinweise:

- Gehen Sie gleich vor wie in b).
- Wegen der Nenner x + 7 und 2x + 14 in der ursprünglichen Gleichung kann -7 keine Lösung sein.

Hinweise:

- Eine Divison durch 0 ist nicht definiert.
- Eine Division durch eine Zahl, welche den Parameter a oder p enthält, benötigt eine Fallunterscheidung.

R1.5 a)
$$(x, y) = (10, -1)$$

 $L = \{(10, -1)\}$

b) (siehe nächste Seite)

b)
$$L = \{ \}$$

Hinweise:

- Lösen Sie zuerst eine Gleichung nach y (oder x).
- Setzen Sie den Ausdruck für y (oder x) in die andere Gleichung ein.
- Lösen Sie die Gleichung nach x (oder y).

R1.6 a)
$$y = f(x) = 4x + 2$$

b)
$$y = f(x) = \frac{2}{5}x + \frac{9}{5}$$

c)
$$y = f(x) = -\frac{11}{8}x + \frac{17}{4}$$

d)
$$y = f(x) = 4x + 2$$

Hinweise:

- Geben Sie zuerst die allgemeine Form der Funktionsgleichung einer linearen Funktion an.
- Bestimmen Sie die beiden Parameter (a und b) der Gleichung, indem Sie ein Gleichungssystem aufstellen.
- Ein Punkt liegt genau dann auf dem Graf einer Funktion, wenn seine Koordinaten die Funktionsgleichung erfüllen.
- R1.7 a) 12 angeboten, 14 nachgefragt

b)
$$f_A(q) = f_N(q) \text{ für } q = \frac{38}{3} = 12.6... \notin \mathbb{N}$$

$$\Rightarrow \text{ kein genaues Gleichgewicht } \rightarrow q = 13, f_A(13) = 57 \text{ CHF}, f_N(13) = 55 \text{ CHF}$$

- R1.8 a) 4500 CHF
 - b) 388 CHF
 - c) K(x) = E(x) für x = 200

R1.9 Angebotsfunktion
$$f_A(q) = \frac{1}{2}q$$
 CHF

Nachfragefunktion
$$f_N(q) = \left(-\frac{1}{2}q + 300\right)$$
 CHF

Marktgleichgewicht: $f_A(q) = f_N(q)$ für q = 300 und p = 150 CHF

R1.10 a)
$$L = \{0, 4/3\}$$

Hinweise:

- Faktorisieren Sie die linke Seite der Gleichung (Faktor x).
- Ein Produkt ist genau dann gleich 0, wenn mindestens ein Faktor gleich 0 ist.
- b) $L = \{-1, 3\}$

Hinweis:

- Verwenden Sie die Lösungsformel.

c) $L = \{ \}$

Hinweise:

- Lösen Sie zuerst nach x².
- Das Quadrat jeder reellen Zahl ist gleich 0 oder grösser als 0.
- d) (siehe nächste Seite)

d) $L = \{2/3\}$

Hinweise:

- Bringen Sie zuerst die Brüche weg, indem Sie mit dem kleinsten gemeinsamen Vielfachen der Nenner (= 3x) multiplizieren.
- Die Brüche $\frac{1}{x}$ und $\frac{x+1}{x}$ sind für x=0 nicht definiert. Daher kann x=0 keine Lösung sein.
- e) (gleiche Gleichung wie in der Aufgabe 8.6 c))

$$L = \{-3\}$$

Hinweise:

- Bringen Sie zuerst die Brüche weg, indem Sie mit dem kleinsten gemeinsamen Vielfachen der Nenner (= x (x 5)) multiplizieren.
- Die Brüche in der ursprünglichen Gleichung sind für x = 5 nicht definiert. Daher kann x = 5 keine Lösung sein.

R1.11 a)
$$y = f(x) = -(x-2)^2 + 4$$

b)
$$y = f(x) = -\frac{1}{2}x^2 + \frac{1}{2}x + 3$$

Hinweise:

- Geben Sie zuerst die Funktionsgleichung einer allgemeinen quadratischen Funktion an.
- Verwenden Sie in a) die Scheitelpunktsform der Funktionsgleichung.
- Verwenden Sie in b) die allgemeine Form der Funktionsgleichung.
- Bestimmen Sie die Parameter in der Gleichung, indem Sie ein Gleichungssystem aufstellen.
- Ein Punkt liegt genau dann auf dem Graf einer Funktion, wenn seine Koordinaten die Funktionsgleichung erfüllen.

R1.12 Angebots funktion
$$f_A(q) = (q^2 + 300)$$
 CHF

Nachfragefunktion $f_N(q) = (-q + 410)$ CHF

Marktgleichgewicht: $f_A(q) = f_N(q)$ für q = 10 und p = 400 CHF

R1.13
$$K(x) = E(x)$$

$$x_1 = 46 + 2\sqrt{89} = 64.9$$
 (gerundet)

$$x_2 = 46 - 2\sqrt{89} = 27.1$$
 (gerundet)

R1.14 a)
$$y = f(x) = 3^X$$

b)
$$y = f(x) = 4.5^{X}$$

Hinweise:

- Geben Sie zuerst die Funktionsgleichung einer allgemeinen Exponentialfunktion an.
- Bestimmen Sie die Parameter in der Gleichung, indem Sie ein Gleichungssystem aufstellen.
- Ein Punkt liegt genau dann auf dem Graf einer Funktion, wenn seine Koordinaten die Funktionsgleichung erfüllen.
- R1.15 a) 0
 - b) 3
 - c) 1
 - d) (siehe nächste Seite)

d) 8

Hinweis:

- Der Ausdruck loga(x) ist die Antwort auf die Frage "a hoch wieviel ist gleich x?"
- e) :
- f) 3.15

Hinweis:

- Benützen Sie, dass für alle $a \in \mathbb{R}^+ \setminus \{1\}$ gilt: $a^{\log_a(x)} = x$

R1.16 Einfacher Zins

$$K_n = K_0(1 + nr)$$
 mit $K_0 = 8000$ CHF, $r = 12\%$, $n = 3$ $\Rightarrow K_3 = 10'880$ CHF

R1.17 Einfacher Zins

$$i = \frac{\frac{K_n}{K_0} - 1}{n}$$
 mit $K_0 = 2000$ CHF, $K_n = 2100$ CHF, $n = \frac{3}{4}$ (9 Monate = $\frac{3}{4}$ Jahre)
 $\Rightarrow i = 6\frac{2}{3}\%$

R1.18 Einfacher Zins

$$K_0 = \frac{K_n}{1 + ni}$$
 mit $K_n = 3000$ CHF, $i = 6\%$, $n = \frac{1}{3}$
 $\Rightarrow K_0 = 2941.18$ CHF (gerundet)

R1.19 Zinseszins

$$K_n = K_0 \left(1 + \frac{i_a}{m}\right)^n$$
 mit $K_0 = 1000$ CHF, $i_a = 8\%$, $m = 4$, $n = 4.4 = 16$
 $\Rightarrow K_n - K_0 = 372.79$ CHF (gerundet)

R1.20 Zinseszins

$$\begin{split} K_0 &= \frac{K_n}{\left(1 + \frac{i_a}{m}\right)^n} \\ &\Rightarrow K_0 = 14'510.26 \text{ CHF (gerundet)} \end{split}$$
 mit $K_n = 18'000 \text{ CHF, } i_a = 5.4\%, \, m = 12, \, n = 12 \cdot 4 = 48$

R1.21 9.86 Millionen (gerundet)

Hinweise:

- Die Bevölkerung wächst exponentiell.
- Geben Sie die Funktionsgleichung einer allgemeinen Exponentialfunktion an.
- Bestimmen Sie sowohl den Anfangswert als auch den Wachstumsfaktor.

Detailliertere Lösung:

- $-y = f(x) = c \cdot a^x$
- Anfangswert (Bevölkerung im Jahr 2010): c = f(0) = 4'500'000
- Wachstumsfaktor a = 1 + 4% = 1.04
- Bevölkerung im Jahr 2030: $f(20) = 4'500'000 \cdot 1.04^{20} = 9.86$ Millionen (gerundet)

R1.22 Vorschüssige Rente

$$r = \frac{R_n(q \cdot 1)}{q(q^n \cdot 1)}$$
 mit $R_n = 250'000$ CHF, $q = 1 + \frac{10.2\%}{4}$, $n = 4.5 \cdot 4 = 18$
 $\Rightarrow r = 10'841.24$ CHF (gerundet)

R1.23 Nachschüssige Rente

$$\begin{split} n &= \frac{\lg\left(\frac{r}{r - R_0(q - 1)}\right)}{\lg(q)} & \text{mit } R_0 = 488'000 \text{ CHF, } r = 40'000 \text{ CHF, } q = 1 + \frac{6.8\%}{2} \\ \Rightarrow & n = 16.02... \ \rightarrow \ 16 \text{ Halbjahre} = 8 \text{ Jahre} \end{split}$$

- R1.24 2 Renten: 3 Jahre ab jetzt (Geld einzahlen), 4 Monate (Geld abheben)
 - 4 Monate (Geld abheben): Vorschüssige Rente

$$\begin{split} R_0 &= r \; \frac{q^n \cdot 1}{q^{n \cdot 1}(q \cdot 1)} \qquad \qquad \text{mit } r = 5000 \; \text{CHF, } q = 1 + \frac{6.6\%}{12} \; , \, n = 4 \\ \Rightarrow \; R_0 &= 19'836.49 \dots \; \text{CHF} \end{split}$$

- 3 Jahre ab jetzt (Geld einzahlen): Vorschüssige Rente

$$r = \frac{R_n(q-1)}{q(q^n-1)}$$
 mit $R_n = \dots$ (= R_0 bei erster Rente), $q = 1 + \frac{6.6\%}{12}$, $n = 36$ $\Rightarrow r = 497.04$ CHF (gerundet)

- R1.25 Die ganze Summe, die Herr S. am Ende des ersten Jahres einzahlt, trägt Zins. Das Kapital am Ende des 8. Jahres muss dasselbe sein wie der Wert, den die Rente hätte, falls Herr S. 8-mal am Ende jedes Jahres eine Zahlung tätigen würde.
 - Nachschüssige Rente

$$R_n = r \frac{q^n - 1}{q - 1}$$
 mit $r = 25'000$ CHF, $q = 1 + 4.5\%$, $n = 8$
 $\Rightarrow R_n = 234'500.34...$ CHF

- Zinseszins

$$K_0 = \frac{K_n}{(1+i)^n} \qquad \text{mit } K_n = \dots \ (=R_n \ \text{bei der Rente}), \ i=4.5\%, \ n=7$$

$$\Rightarrow \ K_0 = 172'317.53 \ \text{CHF (aufgerundet)}$$

R1.26 a) - Nachschüssige Rente (Alter 60 bis 75)

$$R_0 = r \frac{q^{n-1}}{q^n(q-1)}$$
 mit $r = 8000$ CHF, $q = 1 + 2.5\%$, $n = 15$
 $\Rightarrow R_0 = 99'051.02...$ CHF

- Zinseszins (Alter 55 bis 60)

$$K_0 = \frac{K_n}{(1+i)^n}$$
 mit $K_n = ...$ (= R_0 bei Rente Alter 60 bis 75), $i = 3\%$, $n = 5$
 $\Rightarrow K_0 = 85'442.28...$ CHF

- Nachschüssige Rente (Alter 25 bis 55)

$$\begin{split} r &= \frac{R_n(q-1)}{q^n-1} & \text{mit } R_n = \dots \ (=K_0), \ q = 1+3\%, \ n = 30 \\ \Rightarrow & \ r = 1795.93 \ \text{CHF} \end{split}$$

b) Zinseszins (Alter 25 bis 60)

$$K_n = K_0 \ (1+i)^n \quad mit \ K_0 = 40'000 \ CHF, \ i = 3\%, \ n = 35$$

- \Rightarrow K_n = 112'554.50 CHF (gerundet) > ... (= R₀ bei Rente Alter 60 bis 75)
- ⇒ Der Betrag reicht für seine Altersvorsorge.