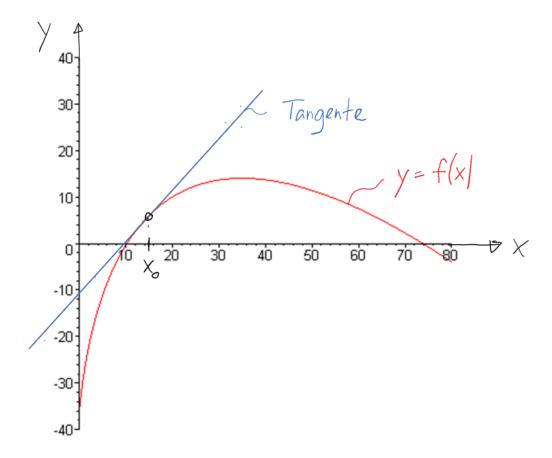
Ableitung

Funktion f

 $f: \ D \to \mathbb{R} \qquad \text{mit } D \subseteq \mathbb{R}$ $x \mapsto y = f(x)$

Bsp.: $f(x) = 24\sqrt{x+1} - 2x - 60$



Was wollen wir wissen?

Steigung der Tangente an den Grafen der Funktion f bei einem bestimmten Punkt $A(x_0 | f(x_0))$.

Warum wollen wir die Steigung wissen?

- Steigen (Steigung > 0), Fallen (Steigung < 0)
- Lokales **Maximum/Minimum** (Steigung = 0)
- Krümmung (konvex bei zunehmender Steigung, konkav bei abnehmender Steigung), Wendepunkte

Anwendungen in der Volks- und Betriebswirtschaft

- Tendenz von Kosten/Ertrag/Gewinn
- Maximum/Minimum von Kosten/Ertrag/Gewinn
- **Grenzkosten/-ertrag/-gewinn** (Änderung von Kosten/Ertrag/Gewinn, wenn die Stückzahl x um eins zunimmt)

Definition

Die Steigung der Tangente an den Grafen von f durch den Punkt $A(x_0 | f(x_0))$ heisst **Ableitung** (oder **Änderungsrate**) **von f an der Stelle x_0**, bezeichnet mit $f'(x_0)$ ("f Strich von x_0 ").

Wie können wir die Steigung bestimmen?

Die Steigung der **Sekante** durch die Punkte $A(x_0 | f(x_0))$ und $B(x_0+\Delta x | f(x_0+\Delta x))$ strebt nach der Steigung der **Tangente** durch $A(x_0 | f(x_0))$, wenn Δx gegen 0 strebt.



Bsp.: f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$
 $f'(x_0) = 2x_0$

Definition

Angenommen, die Ableitung (Änderungsrate) f ' (x_0) existiert für alle $x_0 \in D_1$, mit $D_1 \subseteq D$.

Die Funktion f'

 $f': D_1 \to \mathbb{R}$

 $x \mapsto y = f'(x)$

heisst Ableitung (oder Ableitungsfunktion) von f.

Bsp. 1: f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

$$f': \mathbb{R} \to \mathbb{R}$$

$$x \mapsto y = f'(x) = 2x$$

Bsp. 2: f:
$$D \to \mathbb{R}$$

$$x \mapsto y = f(x) = 24\sqrt{x+1} - 2x - 60$$

$$f': D_1 \to \mathbb{R}$$

$$\begin{array}{ccc} f' \colon \ D_1 \to \mathbb{R} \\ x \ \mapsto \ y = f'(x) = \frac{12}{\sqrt{x+1}} \ \text{-} \ 2 \end{array}$$

