Aufgaben 9 Exponentialfunktion und -gleichungen Zinseszins, Exponentialfunktion

Lernziele

- das zukünftige Kapital berechnen können, das zu einem festen jährlichen Zinssatz mit Zins und Zinseszins angelegt wird.
- Zinseszinsaufgaben bearbeiten können.
- eine Exponentialfunktion bei vorgegebener Funktionsgleichung grafisch darstellen können.
- die Funktionsgleichung einer Exponentialfunktion aus zwei Punkten, die auf dem Grafen der Funktion liegen, bestimmen können.
- angewandte Problemstellungen mit Hilfe der Exponentialfunktion bearbeiten können.

Aufgaben

- 9.1 Ein Anfangskapital K₀ ist zum jährlichen Zinssatz i mit Zinseszins angelegt.
 - a) Das Anfangskapital sei $K_0 = 1000.00$ CHF und der jährliche Zinssatz i = 2%. Bestimmen Sie das Kapital nach einem, zwei, drei, vier und fünf Jahr(en).
 - b) Versuchen Sie, eine Formel herzuleiten, die es Ihnen erlaubt, das Kapital K_n nach n Jahren zu berechnen für beliebige Werte von K₀, i und n.
 - c) Lösen Sie die Formel, die Sie in b) hergeleitet haben, nach K₀ und i.
- 9.2 Welches ist das zukünftige Kapital, wenn 8000 CHF 10 Jahre lang mit Zins und Zinseszins investiert werden zu einem jährlichen Zinssatz von 12%?
- 9.3 Welches Anfangskapital beträgt nach 10 Jahren 10'000 CHF, wenn es mit Zins und Zinseszins zu einem jährlichen Zinssatz von 6% angelegt wird?
- 9.4 Zu welchem jährlichen Zinssatz müssten 10'000 CHF mit Zins und Zinseszins angelegt werden, damit das Kapital nach 7 Jahren 14'000 CHF betragen würde?
- 9.5 Frau Schmid möchte 150'000 CHF 5 Jahre lang anlegen. Die Bank A offeriert ihr einen jährlichen Zinssatz von 6.5% bei Zins und Zinseszins. Die Bank B bietet an, nach 5 Jahren 200'000 CHF zu zahlen. Welche Bank macht das bessere Angebot?
- 9.6 Der Kauf von Alaska kostete die USA 7 Millionen \$ im Jahre 1869. Angenommen, dieses Geld wäre damals in ein Sparkonto einbezahlt worden, welches Zins und Zinseszins bei einem jährlichen Zinssatz von 2% getragen hätte. Wieviel Geld wäre bei dieser Investition im Jahre 2025 verfügbar?
- 9.7 Maria Stähli investierte 2500 CHF in eine 36-Monate-Anlage, welche einen einfachen Zins von jährlich 8.5% trug. Als die Anlage auslief, investierte sie die ganze Summe in einen Fond, der einem jährlichen Wachstum von 18% (bei Zins und Zinseszins) entsprach. Wieviel war dieser Fond nach 9 Jahren wert?
- 9.8 Ein Kapital wird 4 Jahre lang zu 4% und 3 weitere Jahre lang zu 6% angelegt (jeweils Jahreszinssatz, Zins und Zinseszins). Am Ende beträgt das Kapital 72'000 CHF.
 - a) Bestimmen Sie das Anfangskapital.
 - b) Wie hoch ist der durchschnittliche Zinssatz bezüglich der ganzen Zeitperiode?

9.9 Ein unbekanntes Anfangskapital wird zu einem unbekannten jährlichen Zinssatz mit Zins und Zinseszins angelegt. Nach zwei Jahren beträgt das Kapital 5'891.74 CHF (gerundet) und nach 5 weiteren Jahren 6'997.54 CHF (gerundet).

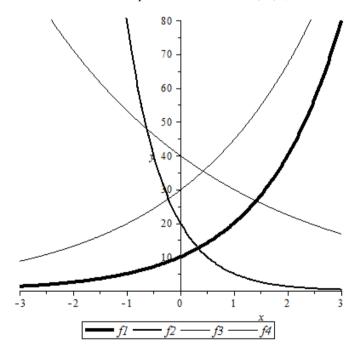
Bestimmen Sie sowohl das Anfangskapital (auf 100 CHF gerundet) als auch den Zinssatz (auf 0.1% gerundet).

9.10 Betrachten Sie die folgende Exponentialfunktion:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = 2^x$

- a) Erstellen Sie eine Wertetabelle von f für das Intervall $-3 \le x \le 3$.
- b) Zeichnen Sie den Grafen von f im Intervall $-3 \le x \le 3$ in ein kartesisches Koordinatensystem.
- 9.11 Skizzieren Sie die Grafen der folgenden Exponentialfunktionen in ein gemeinsames Koordinatensystem:


$$f_1: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f_1(x) = 2^x$

$$\begin{array}{ccc} f_2 \colon \ \mathbb{R} \ \rightarrow \ \mathbb{R} \\ x \ \mapsto \ y = f_2(x) = 0.2^x \end{array}$$

$$f_3: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f_3(x) = 3 \cdot 0.5^x$

$$\begin{array}{ccc} f_4 \colon \ \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & y = f_4(x) = -2 \! \cdot \! 3^x \end{array}$$

9.12 Betrachten Sie die Grafen der Exponentialfunktionen f₁, f₂, f₃ und f₄:

Bestimmen Sie die Funktionsgleichungen der vier Funktionen, d.h. y = f(x) = ...

9.13 (siehe nächste Seite)

9.13	Der Graf einer Exponentialfunktion enthält die Punkte P und Q. Bestimmen Sie die Funktionsgleichung der Exponentialfunktion.		
	a)	P(0 1.02)	Q(1 1.0302)
	b)	P(1 12)	Q(3 192)
	c)	P(0 10'000)	Q(5 777.6)
	d)	P(5 16)	$Q\left(9 \frac{1}{16}\right)$
9.14	Der Wert einer Wohnung, welche vor 20 Jahren 160'000 CHF gekostet hat, ist aufgrund der Marktsituation jedes Jahr um 4% gestiegen. Wieviel kostet die Wohnung heute?		
9.15	Angenommen, ein Land habe 20 Millionen Einwohner und rechnet für die nächsten 20 Jahre mit einem Bevölkerungswachstum von jährlich 2%. Wie gross wird die Bevölkerung dieses Landes in 10 Jahren sein?		
9.16	Der Wert einer Maschine wird auf 10'000 CHF geschätzt. Die Entwertung beträgt jährlich 20%. Bestimmen Sie den Wert der Maschine nach 4 Jahren.		
9.17	Die Grösse einer bestimmten Bakterienkultur wächst exponentiell. Um 8 Uhr betrug die Anzahl Bakterien 2'300, um 11 Uhr 18'400. Bestimmen Sie die Anzahl Bakterien um 13.30 Uhr.		
9.18	Ein Kapital wird mit Zins und Zinseszins angelegt. Bei welchem jährlichen Zinssatz verdoppelt sich das Kapital in 20 Jahren?		
9.19	Entscheiden Sie, welche Aussagen wahr oder falsch sind. Kreuzen Sie das entsprechende Kästchen an. In jeder Aufgabe a) bis c) ist genau eine Aussage wahr.		
	a)	Bei einer Anlage	e mit Zinseszins
		häng	er Graf, der das Wachstum des Kapitals darstellt, eine Parabel. et der Zins, welcher am Ende jeder Zinsperiode bezahlt wird, nur vom Zinssatz ab. et der Zinssatz vom Kapital in der vorangehenden Periode ab. est das Kapital exponentiell.
	b)	Der Graf einer H	Exponentialfunktion
		ist ei	ne Parabel. ne Hyperbel. eidet die y-Achse nie. hrt die x-Achse nie.
	c) Wenn eine Grösse im zeitlichen Verlauf exponentiell wächst, dann		
		häng	nst der Wachstumsfaktor selbst. It der Wachstumsfaktor vom Anfangswert ab. Roppelt sich die Grösse in einem Jahr, falls der jährliche Wachstumsfaktor 100% ist. Roppelt sich die Grösse in konstanten Zeitintervallen.

Lösungen

9.1 a)
$$K_0 = 1000.00 \text{ CHF}$$
 $K_1 = 1020.00 \text{ CHF}$ $K_2 = 1040.40 \text{ CHF}$ $K_3 = 1061.21 \text{ CHF (gerundet)}$ $K_4 = 1082.43 \text{ CHF (gerundet)}$ $K_5 = 1104.08 \text{ CHF (gerundet)}$

- b) $K_n = K_0 (1 + i)^n$
- c) siehe Formelsammlung

9.2
$$K_n = K_0 (1 + i)^n$$
 mit $K_0 = 8000$ CHF, $i = 12\%$, $n = 10$ $\Rightarrow K_{10} = 24'846.79$ CHF (gerundet)

9.3
$$K_0 = \frac{K_n}{(1+i)^n}$$
 mit $K_n = 10$ '000 CHF, $i = 6$ %, $n = 10$ $\Rightarrow K_0 = 5$ '583.95 CHF (gerundet)

9.4
$$i = \sqrt[n]{\frac{K_n}{K_0}} - 1$$
 mit $K_0 = 10'000$ CHF, $K_n = 14'000$ CHF, $n = 7$ $\Rightarrow i = 4.9\%$ (gerundet)

9.5 Bank A:
$$K_5 = 205'513.00$$
 CHF (gerundet)
Bank B: $K_5 = 200'000.00$ CHF

- 9.6 $K_{156} = 154$ Millionen \$ (auf ganze Millionen gerundet)
- 9.7 13'916.24 CHF
 - 2 Perioden: 3 Jahre einfacher Zins, 9 Jahre Zinseszins
 - 3 Jahre einfacher Zins:

$$K_n = K_0 (1 + ni)$$
 mit $K_0 = 2500$ CHF, $i = 8.5\%$, $n = 3$ $\Rightarrow K_3 = 3137.50$ CHF

- 9 Jahre Zinseszins:

$$K_n = K_0 (1+i)^n$$
 mit $K_0 = ...$ (= K_3 nach den ersten drei Jahren), $i = 18\%$, $n = 9$ $\Rightarrow K_9 = 13'916.24$ CHF (gerundet)

9.8 a)
$$K_0 = 51'675 \text{ CHF}$$

Hinweise:

- Betrachten Sie zuerst die zweite Periode (3 Jahre, beginnend nach den ersten 4 Jahren), und berechnen Sie das Kapital zu Beginn dieser zweiten Periode.
- Berechnen Sie dann das Anfangskapital.
- b) i = 4.85% (gerundet)

Hinweis:

- Der durchschnittliche Zinssatz muss so sein, dass gilt: $K_n = K_0 (1 + i)^n$ mit $K_0 = \text{Anfangskapital}, K_n = Kapital nach den ganzen 7 Jahren, n = 7$

9.9 (siehe nächste Seite)

9.9 i = 3.5%, $K_0 = 5'500.00$ CHF

Hinweise:

- Betrachten Sie zuerst die zweite Periode der Länge 5 Jahre mit $K_0 = 5'891.74$ CHF und $K_5 = 6'997.54$ CHF.
- Die 5'891.74 CHF können als Kapital K₂ am Ende der ersten 2 Jahre betrachtet werden, falls K₀ das Anfangskapital zu Beginn der ganzen 7 Jahre ist.
- 9.10 ...
- 9.11 ..

$$\begin{array}{lll} 9.12 & y = f_1(x) = 10 \cdot 2^x & (c = 10, \, a = 2) \\ & y = f_2(x) = 20 \cdot 0.25^x & (c = 20, \, a = 0.25) \\ & y = f_3(x) = 40 \cdot 0.75^x & (c = 40, \, a = 0.75) \\ & y = f_4(x) = 30 \cdot 1.5^x & (c = 30, \, a = 1.5) \end{array}$$

9.13 a) $y = f(x) = 1.02 \cdot 1.01^x$

Hinweise:

- Die Funktionsgleichung einer Exponentialfunktion lautet $y = f(x) = c \cdot a^x$
- Wenn P(0|1.02) und Q(1|1.0302) Punkte des Grafen der Exponentialfunktion sind, dann müssen ihre Koordinaten die Funktionsgleichung der Exponentialfunktion erfüllen, d.h. $1.02 = f(0) = c \cdot a^0$ und $1.0302 = f(1) = c \cdot a^1$
- Lösen Sie die beiden Gleichungen nach c und a.
- b) $y = f(x) = 3.4^x$
- c) $y = f(x) = 10'000 \cdot 0.6^x$
- d) $y = f(x) = 16'384 \cdot 0.25^x$

9.14 350'580 CHF (gerundet)

Hinweis:

- Die Beziehung zwischen Zeit t und Wert W der Wohnung ist eine Exponentialfunktion:

$$W = f(t) = W_0 \cdot a^t$$

 $mit \ W = Wert \ zur \ Zeit \ t, \ W_0 = Anfangswert \ (bei \ t=0) = 160'000 \ CHF, \ a = Wachstumsfaktor = 1 + 4\% = 1.04$

- 9.15 24.4 Millionen (gerundet)
- 9.16 4'096 CHF
- 9.17 104'086 (gerundet)
- 9.18 $i = \sqrt[20]{2} 1 = 3.5\%$ (gerundet)
- 9.19 a) 4. Aussage
 - b) 4. Aussage
 - c) 4. Aussage