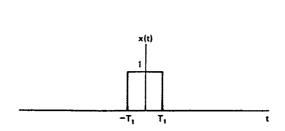
Übung 14 Fourier-Transformation Zeitverschiebung, Zeitskalierung, Linearität

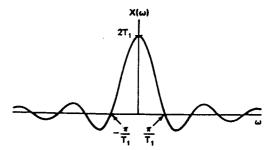
Lernziele

- einen neuen Sachverhalt erarbeiten können.
- grafisch beurteilen können, wie sich eine Zeitskalierung bei einer Funktion auf deren Fourier-Transformierte auswirkt.
- die Zeitverschiebungs-, die Zeitskalierungs- und die Linearitäts-Eigenschaft der Fourier-Transformation bei der Bestimmung der Fourier-Transformierten anwenden können.

Aufgaben

1. Gegeben sind die Grafen der Funktion x(t) und deren Fourier-Transformierten X():





Die Funktion $x_a(t)$ sei definiert durch $x_a(t) := x(at)$ (a R)

a) i) Skizzieren Sie auf einem Blatt nebeneinander die Grafen der Funktionen

$$x_a(t)$$
 für $0 < a < 1$
 $x(t)$

$$x_a(t)$$
 für a>1

ii) Skizzieren Sie auf dem gleichen Blatt darunter die Grafen der dazugehörigen Fourier-Transformierten

$$X_a()$$
 für $0 < a < 1$
 $X()$

X_a() für a>1

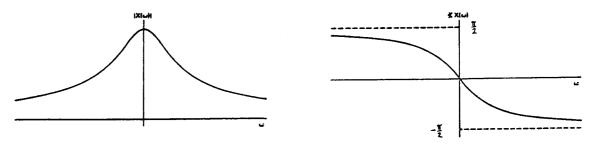
b) Im Zusammenhang mit der Fourier-Transformation wird auch von der "Inversen Beziehung zwischen Zeitbereich und Frequenzbereich" gesprochen.

Betrachten Sie die Grafen aus der Aufgabe a). Versuchen Sie mit Hilfe dieser Grafen herauszufinden, was unter der "Inversen Beziehung zwischen Zeitbereich und Frequenzbereich" gemeint sein könnte.

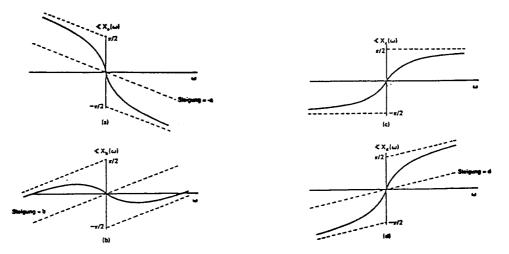
Schreiben Sie das Ergebnis Ihrer Betrachtung in zwei bis drei Sätzen nieder.

2. (siehe Seite 2)

2. Eine Funktion x(t) hat eine Fourier-Transformierte $X(\cdot)$, deren Betrag und Argument in der folgenden Grafik dargestellt sind:



Die Funktionen $x_a(t)$, $x_b(t)$, $x_c(t)$ und $x_d(t)$ haben Fourier-Transformierte $X_a(\)$, $X_b(\)$, $X_c(\)$ und $X_d(\)$, deren Beträge mit dem Betrag von $X(\)$ identisch sind. Die Argumente weichen jedoch voneinander ab, wie die folgende Grafik zeigt:



$$\begin{split} & \text{arg}\big(X_a(\quad)\big) \text{ und arg}\Big(X_b(\quad)\big) \text{ werden durch Addition einer linearen Phase zu arg}\big(X(\quad)\big) \text{ gebildet.} \\ & \text{arg}\Big(X_c(\quad)\Big) \text{ entsteht durch Spiegelung von arg}\big(X(\quad)\big) \text{ an der } \quad \text{-Achse.} \\ & \text{arg}\Big(X_d(\quad)\Big) \text{ erhält man durch eine Kombination von Spiegelung und Addition der linearen Phase.} \end{split}$$

Drücken Sie nun $x_a(t)$, $x_b(t)$, $x_c(t)$ und $x_d(t)$ durch x(t) aus, indem Sie die Eigenschaften der Fourier-Transformation ausnützen.

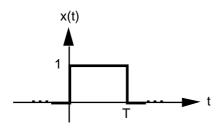
Hinweise:

- i) Drücken Sie zuerst die neue Fourier-Transformierte $X_a(\), X_b(\), ...$ durch die alte Fourier-Transformierte $X(\)$ aus.
- ii) Überlegen Sie sich auf Grund der Eigenschaften der Fourier-Transformation, inwiefern sich $x_a(t)$, $x_b(t)$, ... von x(t) unterscheiden muss.
- 3. (siehe Seite 3)

3. Bestimmen Sie die Fourier-Transformierte $X(\cdot)$ der Funktion x(t).

Benützen Sie dazu lediglich die Transformationstabelle im Buch *Meyer* auf der Seite 51, und wenden Sie die Eigenschaften der Fourier-Transformation an.

a)

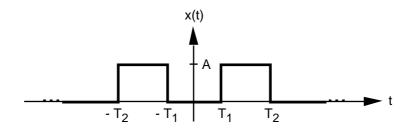


b)
$$x(t) = (t-4)^2 e^{-2(t-4)}$$
 (t-4)

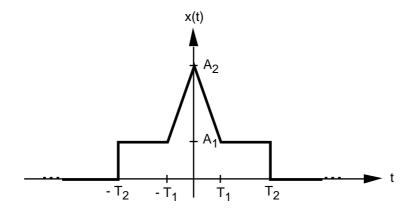
c)
$$x(t) = A \sin(at+b)$$
 (A>0, a>0, b 0)

d)
$$x(t) = 2 \sin(3t+4) + 5 \sin(6t+7)$$

e)



f)



Lösungen

1. a) ...

b) ...

2. $X() = |X()| e^{j} ()$

a)
$$X_a() = |X()| e^{j[()-a]} = |X()| e^{j ()}e^{-ja} = X() e^{-ja}$$
 $x_a(t) = x(t-a)$

$$b) \hspace{1cm} X_{b}(\hspace{0.1cm}) = |X(\hspace{0.1cm})| \hspace{0.1cm} e^{j[\hspace{0.1cm} (\hspace{0.1cm})+b \hspace{0.1cm}]} = |X(\hspace{0.1cm})| \hspace{0.1cm} e^{j\hspace{0.1cm} (\hspace{0.1cm})} e^{jb} \hspace{1cm} = X(\hspace{0.1cm}) \hspace{0.1cm} e^{jb} \hspace{1cm} x_{b}(t) = x(t+b)$$

c)
$$X_c() = |X()| e^{-j} () = X*() = X(-)$$
 $x_c(t) = x(-t)$

$$d) \qquad \qquad X_{d}(\) = |X(\)| \ e^{-j\left[\ (\)-d \ \right]} = |X(\)| \ e^{-j \ (\)} e^{jd} = X(- \) \ e^{jd} \qquad \qquad x_{d}(t) = x(-t-d)$$

3. a)
$$X() = T \frac{\sin\left(\frac{T}{2}\right)}{\frac{T}{2}} e^{-j T/2} \qquad (0)$$

$$T \qquad (=0)$$

b)
$$X(-) = \frac{2}{(j-2)^3} e^{-j4}$$

c)
$$X() = A j ((+a) - (-a)) e^{j b/a}$$

d)
$$X() = j \left(2 \left((+3) - (-3) \right) e^{j + 4/3} + 5 \left((+6) - (-6) \right) e^{j + 7/6} \right)$$

e)
$$X() = \begin{array}{ccc} A & 2T_2 \frac{\sin(& T_2)}{T_2} - 2T_1 \frac{\sin(& T_1)}{T_1} & & (& 0) \\ & A & (2T_2 - 2T_1) & & (& =0) \end{array}$$

f)
$$X() = \begin{array}{c} 2A_{1}T_{2}\frac{\sin(-T_{2})}{T_{2}} + (A_{2} - A_{1}) T_{1}\frac{\sin^{2}\frac{T_{1}}{2}}{\frac{T_{1}}{2}} \\ 2A_{1}T_{2} + (A_{2} - A_{1}) T_{1} \end{array}$$
 (0)
$$(= 0)$$