Aufgaben 8 Quadratische Funktion und Gleichungen Quadr. Funktion/Gleichungen, Angebot, Nachfrage, Marktgleichgewicht

Lernziele

- spezielle quadratische Gleichungen ohne Lösungsformel lösen können.
- eine quadratische Gleichung mit Hilfe der Lösungsformel lösen können.
- eine quadratische Gleichung mit einem Parameter lösen können.
- die Scheitelform einer quadratischen Funktion aus den Koordinaten des Scheitelpunktes und den Koordinaten eines weiteren Punktes der dazugehörigen Parabel bestimmen können.
- die allgemeine Form einer quadratischen Funktion aus den Koordinaten dreier Punkte der dazugehörigen Parabel bestimmen können.
- angewandte Problemstellungen aus dem Bereich Betriebswirtschaft mit Hilfe von quadratischen Gleichungen oder Gleichungssystemen bearbeiten können.

Aufgaben

8.1 Lösen Sie die folgenden quadratischen Gleichungen, ohne die Lösungsformel zu verwenden. Geben Sie jeweils die Lösungsmenge an.

a)
$$(x+2)(x+5) = 0$$

b)
$$(x - 8)(5x - 9) = 0$$

c)
$$x^2 - 3x = 0$$

$$d) x^2 + 7x = 0$$

e)
$$4x^2 - 9 = 0$$

f)
$$100x^2 - 1 = 0$$

g)
$$(3x - 2)(4x + 1) = 0$$

h)
$$4x^2 + 5x = 0$$

i)
$$3x^2 = 27$$

$$x^2 = x$$

8.2 Lösen Sie die folgenden quadratischen Gleichungen. Geben Sie jeweils die Lösungsmenge an.

a)
$$(7 + x)(7 - x) = (3x + 2)^2 - (2x + 3)^2$$

b)
$$(x-3)(2x-7)=1$$

c)
$$\frac{8}{x^2-4} + \frac{2}{2-x} = 3x-1$$

d)
$$\frac{x-4}{x-5} = \frac{30-x^2}{x^2-5x}$$

e)
$$\frac{x^2 - x - 2}{2 - x} = 1$$

$$\frac{x^2 - 4}{x^2 - 4} = 1$$

8.3 Bestimmen Sie den (die) Wert(e) des Parameters b, so dass die quadratische Gleichung genau eine Lösung hat. Geben Sie diese Lösung an.

a)
$$2x^2 = 3x - b$$

b)
$$x^2 + bx + b = -3$$

8.4 Lösen Sie die folgenden Gleichungen nach x. Berücksichtigen Sie dabei, dass der Prameter b irgend eine reelle Zahl sein kann.

a)
$$x^2 + x + b = 0$$

b)
$$-bx = 1 + 4x^2$$

8.5 Eine Parabel hat den Scheitelpunkt S und enthält den Punkt P.

Bestimmen Sie die Funktionsgleichung der dazugehörigen quadratischen Funktion sowohl in der allgemeinen Form als auch in der Scheitelform.

- a) S(2|4)
- P(-1|7)
- b) S(1|-8)
- P(2|-7)

8.6 Eine Parabel enthält die drei Punkte P, Q und R.

Bestimmen Sie die Funktionsgleichung der dazugehörigen quadratischen Funktion in der allgemeinen Form.

- a) P(-4|8)
- Q(0|0)
- R(10|15)

- b) P(1|-1)
- Q(2|4)
- R(4|8)
- 8.7 Bestimmen Sie zu den gegebenen Angebots- und Nachfragefunktionen f_A und f_N einer Ware die Gleichgewichtsmenge und den Gleichgewichtspreis:
 - a) Angebot

$$p = f_A(q) = \frac{1}{4} q^2 + 10$$

Nachfrage

$$p = f_N(q) = 86 - 6q - 3q^2$$

b) Angebot

$$p = f_A(q) = q^2 + 8q + 16$$

Nachfrage

$$p = f_N(q) = -3q^2 + 6q + 436$$

8.8 Die Kosten C(x) bei der Produktion von x Artikeln und der Ertrag R(x) beim Vekauf von x Artikeln sind gegeben durch

$$C(x) = 2000 + 40x + x^2$$

$$R(x) = 130x$$

Bestimmen Sie die Stückzahl(en) x für die Gewinnschwelle(n).

8.9 Die Kosten C(x) bei der Produktion von x Artikeln und der Ertrag R(x) beim Vekauf von x Artikeln sind unten gegeben.

Wieviele Artikel müssen hergestellt und vekauft werden, damit der Profit 200 CHF erzielt wird?

$$C(x) = (x^2 + 100x + 80)$$
 CHF

$$R(x) = (160x - 2x^2) CHF$$

3/3

Lösungen

8.1 a)
$$L = \{-5, -2\}$$

b)
$$L = \{9/5, 8\}$$

c)
$$L = \{0, 3\}$$

d)
$$L = \{-7, 0\}$$

e)
$$L = \{-3/2, 3/2\}$$

f)
$$L = \{-1/10, 1/10\}$$

g)
$$L = \{-1/4, 2/3\}$$

h)
$$L = \{-5/4, 0\}$$

i)
$$L = \{-3, 3\}$$

j)
$$L = \{0, 1\}$$

8.2 a)
$$L = \{-3, 3\}$$

b)
$$L = \{5/2, 4\}$$

c)
$$L = \{-5/3, 0\}$$

d)
$$L = \{-3\}$$

e)
$$L = \{-2\}$$

f)
$$L = \mathbb{R} \setminus \{-2, 2\}$$

8.3 a)
$$b = \frac{9}{8}$$

$$x = \frac{3}{4}$$

b)
$$b_1 = -2$$

$$x = 1$$

$$b_2 = 6$$

$$x = -3$$

8.4 a)
$$b < \frac{1}{4}$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1 - 4b}}{2}$$

2 Lösungen

$$b = \frac{1}{4}$$

$$\mathbf{x} = -\frac{1}{2}$$

1 Lösung

$$b > \frac{1}{4}$$

$$L = \{ \}$$

keine Lösung

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 16}}{8}$$

$$b=\pm\ 4$$

$$x = -\frac{b}{8}$$

1 Lösung

2 Lösungen

$$L = \{ \}$$

keine Lösung

8.5 a) y = f(x) =
$$\frac{1}{3}$$
(x - 2)² + 4 = $\frac{1}{3}$ x² - $\frac{4}{3}$ x + $\frac{16}{3}$

b)
$$y = f(x) = (x - 1)^2 - 8 = x^2 - 2x - 7$$

8.6 a)
$$y = f(x) = \frac{1}{4}x^2 - x$$

b)
$$y = f(x) = -x^2 + 8x - 8$$

$$q = 4, p = 14$$

$$q = 10, p = 196$$

8.8
$$x_1 = 40, x_2 = 50$$

8.9 Gewinn
$$P(x) = R(x) - C(x) = -3x^2 + 60x - 80 \stackrel{!}{=} 200$$

$$L = \{7.41..., 12.58...\}$$

7 oder 13 Artikel