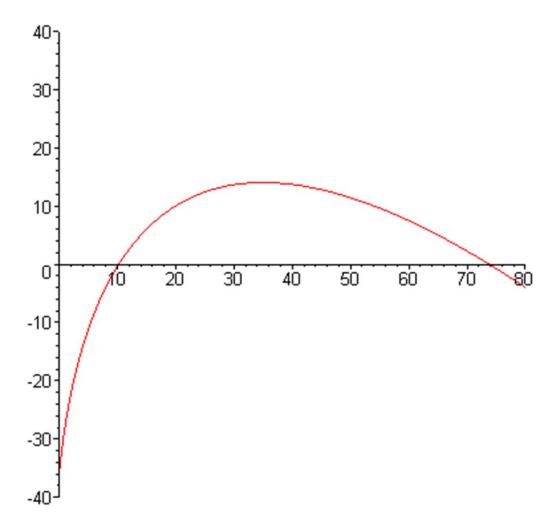
Derivative

Function f

f: $D \to \mathbb{R}$ where $D \subset \mathbb{R}$

 $x \rightarrow y = f(x)$

Ex.: $f(x) = 24\sqrt{x+1} - 2x - 60$



What do we want to know?

Slope of the tangent to the graph of the function f at a certain point $A(x_0 | f(x_0))$.

Why do we want to know the slope?

- relative **maximum/minimum** (slope = 0)
- increasing (slope > 0), decreasing (slope < 0)
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Applications in economics

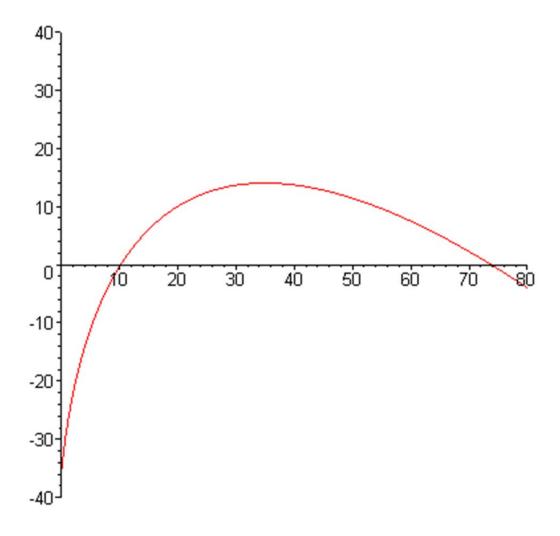
- maximum/minimum of costs/revenue/profit
- tendency of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

Definition

The slope of the tangent to the graph of f at the point $A(x_0 | f(x_0))$ is called the **derivative** or the **rate of change of f at** $\mathbf{x_0}$, denoted $f'(x_0)$.

How can we determine the slope?

The slope of the secant through the points $A(x_0 \mid f(x_0))$ and $B(x_0 + \Delta x \mid f(x_0 + \Delta x))$ tends towards the slope of the tangent at $A(x_0 \mid f(x_0))$ as Δx tends towards 0.



Ex.: f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \to y = f(x) = x^2$
 $f'(x_0) = 2x_0$

Definition

Suppose that the rate of change $f'(x_0)$ exists for all $x_0 \in D_1$, where $D_1 \subset D$.

The function f'

 $f: D_1 \to \mathbb{R}$

$$x \rightarrow y = f'(x)$$

is called the **derivative of the function f**.

Ex. 1:
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \to y = f(x) = x^2$

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \to y = f(x) = 2x$

Ex. 2: f: D
$$\to \mathbb{R}$$

 $x \to y = f(x) = 24\sqrt{x+1} - 2x - 60$

40٦

30-

$$\begin{array}{ll} D \to \mathbb{R} & f' \colon \ D_1 \to \mathbb{R} \\ x \to \ y = f(x) = 24 \sqrt{x+1} \text{ - } 2x \text{ - } 60 & x \to \ y = f'(x) = \frac{12}{\sqrt{x+1}} \text{ - } 2 \end{array}$$

