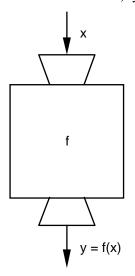
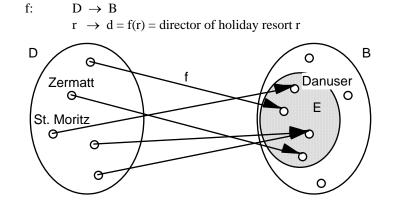

Function

Definition and examples

Def.: A function f is a rule that assigns to each element x in a set D exactly one element y in a set B.



The function f **maps** the set D onto the set B.


 $\begin{array}{rl} f: & D \rightarrow B \\ & x \ \rightarrow \ y = f(x) & ("f \ of \ x") \end{array}$

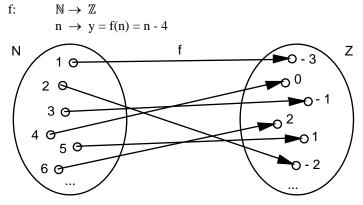
The set D is the **domain**, the set B is the **codomain**, and the set E is the **range** of the function f.

The element y is the **image** of the element x. or (if D and B are number sets): y is the **value** of f at x.

Ex.: 1. D = set of all the Swiss holiday resortsB = set of all the human beings

- 2. D = set of all the countries of the world B = set of all the cities of the world
 - f: $D \rightarrow B$ a $\rightarrow b = f(a) = capital of country a$

3. Cable car company

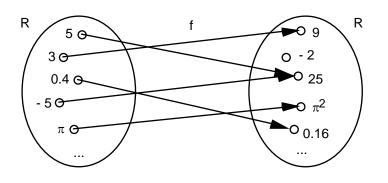

 $D = \mathbb{N}$ (= set of natural numbers)

 $B = \mathbb{R}$ (= set of real numbers)

f:
$$D \rightarrow B$$

 $n \rightarrow r = f(n) = revenue (e.g. in Euros) when n tickets are sold$

4. $D = \mathbb{N}$


$$\mathbf{B} = \mathbb{Z}$$

5.
$$D = B = \mathbb{R}$$

 $p: \mathbb{R} \to \mathbb{R}$
 $x \to y = p(x) = \frac{x^3 \cdot 3}{2x^2 + 1}$

Representation of a function

Arrow diagram

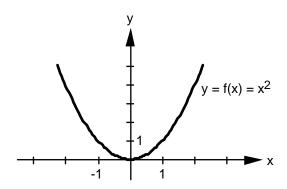


Table of values

х	v
1	1
3	9
5	25
- 5	25
0.4	0.16

Equation

Graph

