Exercises 16 Indefinite integral Antiderivative, indefinite integral, coefficient/sum rule

Objectives

- be able to determine an antiderivative and the indefinite integral of a constant/basic power/basic exponential function.
- be able to apply the coefficient/sum rule to determine the indefinite integral of a function.
- be able to determine the cost/average cost/revenue/profit function if the marginal cost/average cost/revenue/profit function is known.

Problems

- 16.1 Determine the indefinite integrals below:
 - a) $\int x^3 dx$
 - b) $\int x^2 dx$
 - c) $\int \frac{1}{x^4} dx$
 - d) $\int \frac{1}{x^2} dx$
 - e) $\int x^{-5} dx$
 - f) $\int 4 dx$
 - g) $\int (-7) dx$
 - h) $\int e^x dx$
- 16.2 Determine the indefinite integral of the following functions f:
 - a) $f(x) = x^5$
 - b) $f(x) = 3x^2$
 - c) $f(x) = x^3 + 2x^2 5$
 - d) $f(x) = \frac{1}{2}x^5 \frac{2}{3x^2}$
 - e) $f(x) = \frac{1}{2}x^3 2x^2 + 4x 5$
 - f) $f(x) = x^{10} \frac{1}{2}x^3 x$
- Find the equations of two antiderivatives F_1 and F_2 of f such that the stated conditions are fulfilled.
 - $f(x) = 10x^2 + x$
- $F_1(0) = 3$
- $F_2(0) = -1$

- b) $f(x) = x^3 + 3x + 1$
- $F_1(2) = 5$
- $F_2(4) = -8$
- 16.4 Suppose that we know the equation of the derivative f' of a function f:

$$f'(x) = 3x^2 - 50x + 250$$

Determine the equation of the function f, if ...

- a) ... f(0) = 500.
- b) ... f(10) = 2500.

16.5 Suppose that we know the equation of the second derivative f" of a function f:

$$f''(x) = 2x - 1$$

Find the equation of ...

- a) ... the first derivative f' such that f'(2) = 4.
- b) ... the function f such that f'(2) = 4 and f(1) = -1.
- 16.6 If the monthly marginal cost (in dollars) for a product is C'(x) = 2x + 100, with fixed costs amounting to \$200, find the total cost function for the month.
- 16.7 If the marginal cost (in dollars) for a product is C'(x) = 4x + 2, and the production of 10 units results in a total cost of \$300, find the total cost function.
- 16.8 If the marginal cost (in dollars) for a product is C'(x) = 4x + 40, and the total cost of producing 25 units is \$3000, what will be the cost of producing 30 units?
- A firm knows that its marginal cost for a product is C'(x) = 3x + 20, that its marginal revenue is R'(x) = 44 5x, and that the cost of production and sale of 80 units is \$11'400.
 - a) Find the profit function P(x).
 - b) How many units will result in a maximum profit?

Hint:

- The revenue R is zero if no unit is sold. Thus, R(0) = \$0.
- 16.10 Suppose that the marginal revenue R'(x) and the derivative of the average cost $\overline{C}'(x)$ are given as follows:

$$R'(x) = 100$$

 $\overline{C}'(x) = 2 - \frac{1800}{x^2}$

The production of 10 units results in a total cost of \$1000.

- a) Find the total cost function C(x).
- b) How many units will result in a maximum profit? Find the maximum profit.

Answers

16.1 a)
$$\int x^3 dx = \frac{x^4}{4} + C$$

b)
$$\int x^2 dx = \frac{x^3}{3} + C$$

c)
$$\int \frac{1}{x^4} dx = -\frac{1}{3x^3} + C$$

d)
$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$

e)
$$\int x^{-5} dx = -\frac{1}{4x^4} + C$$

f)
$$\int 4 \, dx = 4x + C$$

g)
$$\int (-7) dx = -7x + C$$

$$h) \qquad \int e^x dx = e^x + C$$

16.2 a)
$$\int f(x) dx = \int x^5 dx = \frac{x^6}{6} + C$$

b)
$$\int f(x) dx = \int 3x^2 dx = x^3 + C$$

c)
$$\int f(x) dx = \int (x^3 + 2x^2 - 5) dx = \frac{x^4}{4} + \frac{2x^3}{3} - 5x + C$$

d)
$$\int f(x) dx = \int \left(\frac{1}{2}x^5 - \frac{2}{3x^2}\right) dx = \frac{x^6}{12} + \frac{2}{3x} + C$$

e)
$$\int f(x) dx = \int \left(\frac{1}{2}x^3 - 2x^2 + 4x - 5\right) dx = \frac{x^4}{8} - \frac{2x^3}{3} + 2x^2 - 5x + C$$

f)
$$\int f(x) dx = \int \left(x^{10} - \frac{1}{2}x^3 - x\right) dx = \frac{x^{11}}{11} - \frac{x^4}{8} - \frac{x^2}{2} + C$$

16.3 a)
$$F_1(x) = \frac{10x^3}{3} + \frac{x^2}{2} + 3$$

$$F_2(x) = \frac{10x^3}{3} + \frac{x^2}{2} - 1$$

b)
$$F_1(x) = \frac{x^4}{4} + \frac{3x^2}{2} + x - 7$$

$$F_2(x) = \frac{x^4}{4} + \frac{3x^2}{2} + x - 100$$

Hints:

- First, determine the indefinite integral of f(x).
- Then, find the value of the integration constant such that the stated condition is fulfilled.

16.4 a)
$$f(x) = x^3 - 25x^2 + 250x + 500$$

b)
$$f(x) = x^3 - 25x^2 + 250x + 1500$$

16.5 a)
$$f'(x) = x^2 - x + 2$$

b)
$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + 2x - \frac{17}{6}$$

16.6
$$C(x) = x^2 + 100x + 200$$

Hints:

- First integrate the marginal cost function $C'(x) \Rightarrow C(x) = x^2 + 100x + C$ ($C \in \mathbb{R}$)
- Determine the integration constant C using the fact that $C(0) = \$200 \implies C = 200$

16.7
$$C(x) = 2x^2 + 2x + 80$$

16.8 C(30) = \$3750

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = 2x^2 + 40x + 750$.

16.9 a) $P(x) = -4x^2 + 24x - 200$

Hints:

- Find the cost and revenue functions C(x) and $R(x) \Rightarrow C(x) = \frac{3}{2}x^2 + 20x + 200$, $R(x) = 44x \frac{5}{2}x^2$
- Then, determine the profit function P(x).
- b) x = 3

Hints:

- Find the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.

16.10 a) $C(x) = 2x^2 - 100x + 1800$

Hints:

- First, determine the average cost function $\overline{C}(x) \Rightarrow \overline{C}(x) = 2x + \frac{1800}{x} + C_1$
- Then, determine the cost function C(x).
- b) P = \$3200 is the absolute maximum profit at x = 50 units.

Hints:

- First, determine the revenue function $R(x) \Rightarrow R(x) = 100x$
- Then, find the profit function $P(x) \Rightarrow P(x) = -2x^2 + 200x 1800$
- Find the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.