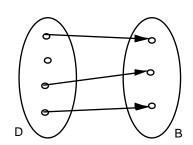
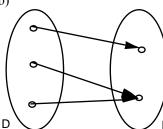
Exercises 3 Function Domain, codomain, range, graph


Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.


Problems

3.1 Which of the following relations are functions? Explain your answer.


a)

b)

c)

d) O O O O

- e) D = set of all the modules of the HTW Tourism bachelor programme
 - B = set of all the HTW lecturers
 - f: D \rightarrow B, m \rightarrow l = f(m) = lecturer of m
- f) D = {1985, 1986, ..., 1994, 1995}
 - B = set of all the human beings aged between 20 and 30
 - f: $D \rightarrow B$, $y \rightarrow p = f(y) = person who was born in the year y$
- g) D = set of all the human beings aged between 20 and 30
 - $B = \{1985, 1986, \dots, 1994, 1995\}$
 - f: $D \rightarrow B$, $p \rightarrow y = f(p) = year of birth of person p$
- h) f: $\mathbb{R} \to \mathbb{R}$, $x \to y = f(x) = x^2$
- i) f: $\mathbb{R}^+ \to \mathbb{R}$, $x \to y = f(x) =$ number whose square is x

Notice

- \mathbb{R}^+ is the set of all positive real numbers, i.e. $\mathbb{R}^+ = \{x : x \in \mathbb{R} \text{ and } x > 0\}$.
- j) f: $\mathbb{R} \to \mathbb{R}$, $t \to b = f(t) = bank$ account balance at time t

3.2 Determine the range E of the functions below:

- a) D = {January, February, March, ..., December}
 - $B = \{A, B, C, ..., Z\}$
 - f: D \rightarrow B, m \rightarrow l = f(m) = initial letter of m
- b) D = set of all the neighbouring countries of Switzerland
 - B = set of all the European cities
 - c: $D \rightarrow B$, $x \rightarrow y = c(x) = capital of neighbouring country x$
- c) function f in problem 3.1 g)
- d) function f in problem 3.1 h)
- 3.3 a) f: $\mathbb{R} \to \mathbb{R}$, $x \to f(x) = x^3 x$

Determine the following values:

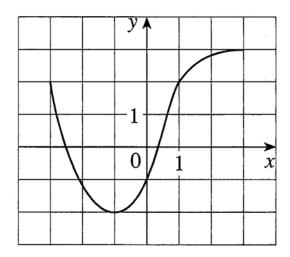
- i) f(1)
- f(-2)

f(a - b)

iii) f(a)

- iv) $f(b^2)$
- v)
- V
- vi) $f(x^3 x)$
- b) g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $x \to g(x) = \frac{x^2}{x+1}$

Determine the following values:


- i) g(2)
- ii)
- iii) g(a)

- iv) $g(b^2)$
- v) g(a b)

g(-3)

vi) $g\left(\frac{x^2}{x+1}\right)$

3.4 The graph of a function f ist given as follows:

- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range E of f.

Decide which statements are true or false. Put a mark into the corresponding box.		
m each	In each problem a) to c), exactly one statement is true.	
a)	The range of the function f: $\{x: x \in \mathbb{R} \text{ and } x \ge 4\} \to \mathbb{R}, x \to y = f(x) = \sqrt{x-4}, \text{ is the set}$	
b)	f cannot be a function if	
		the domain of f is no number set. the codomain of f contains more elements than the domain of f. the domain of f contains more elements than the codomain of f. at least one element of the domain of f has more than one image.
c)	If f is such that $f(x) = x$ for all elements x of the domain, it can concluded that	
		the domain of f is the same set as the codomain of f the range of f is the same set as the codomain of f the domain and the codomain of f contain the same number of elements the domain and the range of f contain the same number of elements.
	In each a) b)	a) The rang The rang b) f cannot c) If f is suc

Answers

3.1 no function a)

No element (instead of exactly one element) of B is assigned to one of the elements of D.

- b) function
- c) no function

Two elements (instead of exactly one element) of B are assigned to one of the elements of D.

- d)
- no function e)

More than one element (instead of exactly one element) of B are assigned to some elements of D.

f)

Many elements (instead of exactly one element) of B are assigned to each element of D.

- function g)
- function h)
- i) no function

Two elements (instead of exactly one element) of \mathbb{R} are assigned to each element of \mathbb{R}^+ .

- j) function
- 3.2 a) $E = \{A, D, F, J, M, N, O, S\}$
 - b) E = {Berlin, Vienna, Vaduz, Rome, Paris}
 - E = Bc)
 - $E = \mathbb{R}_{0}^{+}$ d)

Notice:

- \mathbb{R}_0^+ is the set of all positive real numbers, including zero, i.e. $\mathbb{R}_0^+ = \{x: x \in \mathbb{R} \text{ and } x \geq 0\}$.

- $f(1) = 1^3 1 = 0$ 3.3 i) a)
 - $f(-2) = (-2)^3 (-2) = -6$ ii)
 - $f(a) = a^3 a$ iii)
 - $f(b^2) = (b^2)^3 b^2 = b^6 b^2$ iv)
 - $f(a b) = (a b)^3 (a b) = a^3 3a^2b + 3ab^2 b^3 a + b$ v)
 - $f(x^3-x)=(x^3-x)^3-(x^3-x)=x^9-3x^7+3x^5-2x^3+x$ vi)
 - b)
- $g(2) = \frac{2^2}{2+1} = \frac{4}{3}$ $g(-3) = \frac{(-3)^2}{-3+1} = -\frac{9}{2}$ $g(a) = \frac{a^2}{a+1}$ ii)
 - iii)
 - iv)
 - $g(b^{2}) = \frac{(b^{2})^{2}}{b^{2}+1} = \frac{b^{4}}{b^{2}+1}$ $g(a-b) = \frac{(a-b)^{2}}{(a-b)+1} = \frac{a^{2}-2ab+b^{2}}{a-b+1}$
 - $g\left(\frac{x^2}{x+1}\right) = \frac{\left(\frac{x^2}{x+1}\right)^2}{\left(\frac{x^2}{x+1}\right)+1} = \frac{x^4}{x^3 + 2x^2 + 2x + 1}$ vi)

- 3.4 a) f(-1) = -2
 - b) $f(2) \approx 2.8$
 - c) $x_1 = -3, x_2 = 1$
 - d) $x_1 \approx -2.5, x_2 \approx 0.3$
 - e) $D = \{x: x \in \mathbb{R} \text{ and } -3 \le x \le 3\} = [-3,3]$
 - f) $E = \{y: y \in \mathbb{R} \text{ and } -2 \le y \le 3\} = [-2,3]$
- 3.5 a) 4th statement
 - b) 4th statement
 - c) 4th statement