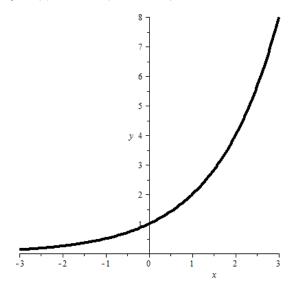
Exponential function

Definition

f: $D \to \mathbb{R}$ $(D \subseteq \mathbb{R})$ $x \mapsto y = f(x) = c \cdot a^{x}$ $(a \in \mathbb{R}^{+} \setminus \{1\}, c \in \mathbb{R} \setminus \{0\})$ a > 1: exponential **growth** a < 1: exponential **decay**

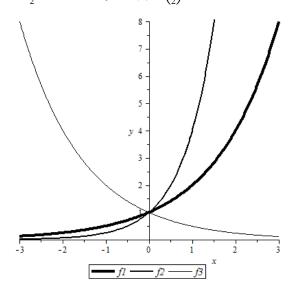
Graph

1. $y = f(x) = 2^x$ (c = 1, a = 2)

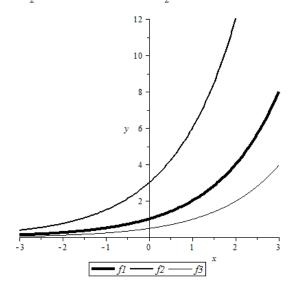


2. Parameter a (in all three cases below: c = 1)

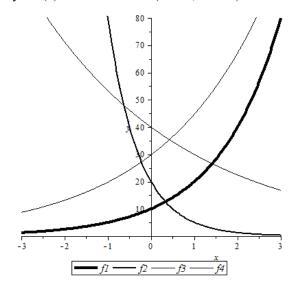
 $\begin{array}{ll} a=2: & y=f_1(x)=2^x \\ a=4: & y=f_2(x)=4^x \\ a=\frac{1}{2}: & y=f_3(x)=\left(\frac{1}{2}\right)^x \end{array}$



- 3. Parameter c (in all three cases below: a = 2)
 - c = 1: $y = f_1(x) = 2^x$
 - c = 3: $y = f_2(x) = 3 \cdot 2^x$
 - $c = \frac{1}{2}$: $y = f_3(x) = \frac{1}{2} \cdot 2^x$



 $\begin{array}{lll} 4. & y = f_1(x) = 10 \cdot 2^x & (c = 10, \, a = 2) \\ y = f_2(x) = 20 \cdot 0.25^x & (c = 20, \, a = 0.25) \\ y = f_3(x) = 40 \cdot 0.75^x & (c = 40, \, a = 0.75) \\ y = f_4(x) = 30 \cdot 1.5^x & (c = 30, \, a = 1.5) \end{array}$



Examples

1. Compound interest (exponential **growth**)

$$\begin{array}{ll} C_n = C_0 \cdot q^n & C_0 = \text{initial capital} \\ C_n = \text{capital after n compounding periods} \\ n = \text{number of compounding periods (typically: 1 compounding period} = 1 \text{ year)} \\ q = \text{growth factor} = 1 + r \quad (q > 1) \\ r = \text{interest rate per compounding period} \\ \text{Ex.:} & C_0 := 1000, \, r := 2\% = 0.02 \implies q = 1.02 \implies C_n = 1000 \cdot 1.02^n \end{array}$$

2. Consumer price index (exponential decay)

$$P(t) = P_0 \cdot q^t$$
 $P_0 = \text{initial purchasing power}$ $P(t) = \text{purchasing power at time t (typically: t in years)}$ $q = \text{decay factor}$ $(q < 1)$ $q = 100, q := 100, q := 0.97 \implies P(t) = 100 \cdot 0.97^t$