Indefinite integral

Ex.: Financial mathematics

Given the marginal cost function C' for the production of a commodity:

$$C'(x) = 3x + 50$$

What is the cost function C?

$$C(x) = ... ?$$

General problem

Given a function f. What function F is such that F' = f?

Ex.:
$$f(x) = 2x$$

 $\Rightarrow F_1(x) = x^2$ as $F_1'(x) = 2x = f(x)$
 $F_2(x) = x^2 + 1$ as $F_2'(x) = 2x + 0 = 2x = f(x)$
 $F_3(x) = x^2 - 4$ as $F_3'(x) = 2x + 0 = 2x = f(x)$
...

 $F(x) = x^2 + C$ ($C \in \mathbb{R}$) as $F'(x) = 2x + 0 = 2x = f(x)$
 $f(x) = 8x^3$
 $\Rightarrow F_1(x) = 2x^4$ as $F_1'(x) = 8x^3 = f(x)$
 $F_2(x) = 2x^4 + 5$ as $F_2'(x) = 8x^3 + 0 = 8x^3 = f(x)$
...

 $F(x) = 2x^4 + C$ ($C \in \mathbb{R}$) as $F'(x) = 8x^3 + 0 = 8x^3 = f(x)$

Definitions

F is called an **antiderivative** of f if its derivative F' is equal to f, i.e. F'(x) = f(x).

The set of all antiderivatives of the function f is called the **indefinite integral** of f, denoted $\int f(x) dx$.

Ex.:
$$f(x) = 8x^3$$

The functions F_1 , F_2 , F_3 , ... with $F_1(x) = 2x^4$, $F_2(x) = 2x^4 + 5$, $F_3(x) = 2x^4 - 11$, ... are all antiderivatives of f. We therefore write $\int f(x) dx = \int 8x^3 dx = 2x^4 + C$

$$f(x) = 12x^{2}$$

$$\int f(x) dx = \int 12x^{2} dx = 4x^{3} + C$$

$$\int 2x dx = x^{2} + C$$

$$\int 3 e^{3x} dx = e^{3x} + C$$

 $C(C \in \mathbb{R})$ is called the **integration constant**.