Exercises 1 Sets

Set, element, empty set, subset, universal set, intersection, union, complement

Objectives

- knov	w and ur	nderstand what a set, an elementerstand the illustration of a erform basic set operations.		a set, an empty set, a subset, an intersection, a union, a compleme a Venn diagram.
Probl	ems			
1.1	Look at the sets A, B, and C:			
	A = Set of all cities of the world B = Set of all European cities C = Set of all coastal cities of the world			
	Find at least four elements of the following sets:			
	a)	$B \cap C$	b)	$B \setminus C$
	c)	$C \setminus B$	d)	$A \setminus (B \cup C)$
1.2	Harshbarger/Reynolds*: Chapter 0 (Algebraic Concepts), Section 0.1 (p. 2-9) (Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)			
	a)	Theory (p. 2-6)	b)	Exercises (p. 6-9)
	*Harshbarger, R.J. and Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6			
1.3	Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.			
	a)	A is any set.		
	b)		e world	1
	B = Set of all European cities			
		\Box B \in A		

 $B \subset A$

 $(A \cup B) \subset (A \cap B)$ $(A \cap B) = (A \setminus B)$

 $(A \cup B) = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$ $(A \cap B) = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$

A and B are any sets.

c)

Answers

- 1.1 a) $B \cap C = \{Lisbon, Copenhagen, Barcelona, Naples, Stockholm, ...\}$
 - b) $B \setminus C = \{London, Paris, Madrid, Berlin, Rome, ...\}$
 - c) C \ B = {Tokyo, San Francisco, Sydney, Rio de Janeiro, ...}
 - d) $A \setminus (B \cup C) = \{Chicago, Mexico City, Nairobi, Beijing, ...\}$
- 1.2 see Harshbarger/Reynolds: Chapter 0, Algebraic Concepts (Scanned pages 2-55 and A1-A5 in file "Algebraic Concepts.pdf" on Moodle)
- 1.3 a) 2nd statement
 - b) 4th statement
 - c) 3rd statement