Exercises 15 Applications of differential calculus Relative maxima/minima, points of inflection

Objectives

- be able to determine the relative maxima/minima of a function.
- be able to determine the points of inflection of a function.
- be able to determine the absolute maximum/minimum of a cost/revenue/profit function.
- be able to determine the absolute minimum of an average cost function.

Problems

- 15.1 For each function, determine ...
 - i) ... the relative maxima and minima.
 - ii) ... the points of inflection.
 - a) $f(x) = x^2 4$
 - b) $f(x) = -8x^3 + 12x^2 + 18x$
 - c) $s(t) = t^4 8t^2 + 16$
 - $f(x) = x e^{-x}$
 - e) * $f(x) = (1 e^{-2x})^2$
 - f) * $V(r) = -D\left(\frac{2a}{r} \frac{a^2}{r^2}\right)$ (D > 0, a > 0)
- 15.2 If the total profit (in CHF) for a commodity is

$$P(x) = 2000x + 20x^2 - x^3$$

where x is the number of items sold, determine the level of sales, x, that maximises profit, and find the maximum profit.

Hints:

- First, find the relative maximum.
- Then, check if the relative maximum is the absolute maximum.
- 15.3 If the total cost (in CHF) for a commodity is given by

$$C(x) = \frac{1}{4}x^2 + 4x + 100$$

where x represents the number of units produced, producing how many units will result in a minimum average cost? Determine the minimum average cost.

15.4 Suppose that the production capacity for a certain commodity cannot exceed 30. If the total profit (in CHF) for this company is

$$P(x) = 4x^3 - 210x^2 + 3600x$$

where x is the number of units sold, determine the number of items that will maximise profit.

15.5 (see next page)

15.5 Suppose the annual profit for a store (in 1000 CHF) is given by

$$P(x) = -0.1x^3 + 3x^2$$

where x is the number of years past 2010. If this model is accurate, determine the point of inflection for the profit.

15.6 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)	If f has a	relative m	avimum at	$\mathbf{x} = \mathbf{x}_0$ it can	he concluded	l that
a)	II I nas a	relative ii	iaxiiiiuiii ai	$1 \mathbf{X} - \mathbf{X}_0 \mathbf{H} \mathbf{Cam}$	de concluded	ı maı

$f(x_0) > f(x)$ for any $x \neq x_0$
$f(x_0) > f(x)$ for any $x > x_0$
$f(x_0) > f(x)$ for any $x < x_0$

... $f(x_0) > f(x)$ for all x which are in a certain neighbourhood of x_0

b)	If $f(\mathbf{x}_0) < 0$ f	$'(x_0) = 0$ and f''	$(\mathbf{x}_0) \neq 0$ it can	be concluded that	t f has
v_j	$111(X_0) > 0, 1$	$(x_0) = 0$, and 1	$(X_0) \neq 0$, it can	de concluded mai	ı 1 11as

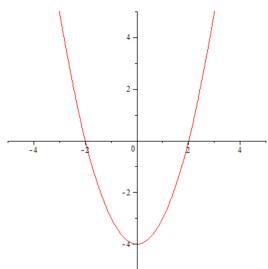
no relative minimum at $x = x_0$
no relative maximum at $x = x_0$
no point of inflection at $x = x_0$
a point of inflection at $x = x_0$

c) The absolute maximum of a function ...

is always a relative maximum.
can be a relative minimum.
can be a relative maximum.
alwavs exists.

Answers

 $f(x) = x^2 - 4$ 15.1 a)



$$f'(x) = 2x$$

$$f''(x) = 2$$

$$f'''(x) = 0$$

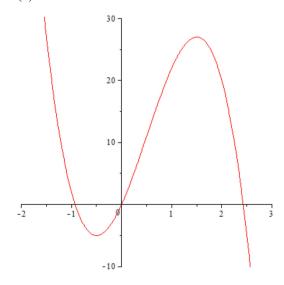
i)
$$f'(x) = 0$$
 at $x_1 = 0$
 $f''(x_1) = 2 > 0$

relative minimum at $x_1 = 0$ no relative maximum

ii)
$$f''(x) = 2 \neq 0$$
 for all x

no point of inflection

b)
$$f(x) = -8x^3 + 12x^2 + 18x$$



$$f'(x) = -24x^2 + 24x + 18$$

$$f''(x) = -48x + 24$$

 $f'''(x) = -48$

$$f'''(x) = -48$$

i)
$$f'(x) = 0$$
 at $x_1 = -\frac{1}{2}$ and $x_2 = \frac{3}{2}$
 $f''(x_1) = 48 > 0$

$$f''(x_1) = 48 > 0$$

relative minimum at
$$x_1 = -\frac{1}{2}$$

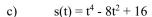
$$f''(x_2) = -48 < 0$$

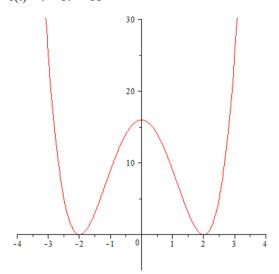
$$\Rightarrow$$

relative maximum at $x_2 = \frac{3^2}{2}$

ii)
$$f''(x) = 0 \text{ at } x_3 = \frac{1}{2}$$

$$f'''(x_3) = -48 \neq 0 \qquad \Rightarrow \qquad \text{point of inflection at } x_3 = \frac{1}{2}$$





$$s'(t) = 4t^3 - 16t$$

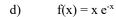
 $s''(t) = 12t^2 - 16$
 $s'''(t) = 24t$

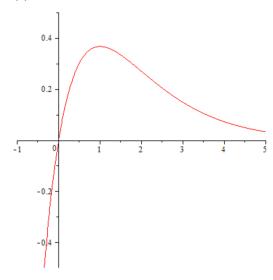
i)
$$s'(t) = 0$$
 at $t_1 = 0$, $t_2 = -2$, and $t_3 = 2$
 $s''(t_1) = -16 < 0 \Rightarrow rela$
 $s''(t_2) = 32 > 0 \Rightarrow rela$
 $s''(t_3) = 32 > 0 \Rightarrow rela$

 $s''(t) = 0 \text{ at } t_4 = -\frac{2}{\sqrt{3}} \text{ and } t_5 = \frac{2}{\sqrt{3}}$ $s'''(t_4) = -\frac{48}{\sqrt{3}} \neq 0$ $s'''(t_5) = \frac{48}{\sqrt{3}} \neq 0$ ii)

relative maximum at $t_1 = 0$ relative minimum at $t_2 = -2$ relative minimum at $t_3 = 2$

⇒ point of inflection at $t_4 = -\frac{2}{\sqrt{3}}$ ⇒ point of inflection at $t_5 = \frac{2}{\sqrt{3}}$





$$f'(x) = e^{-x} - x e^{-x} = (1 - x) e^{-x}$$

$$f''(x) = -e^{-x} - (1 - x) e^{-x} = (x - 2) e^{-x}$$

$$f'''(x) = e^{-x} - (x - 2) e^{-x} = (3 - x) e^{-x}$$

i)
$$f'(x) = 0$$
 at $x_1 = 1$
 $f''(x_1) = -\frac{1}{e} < 0$

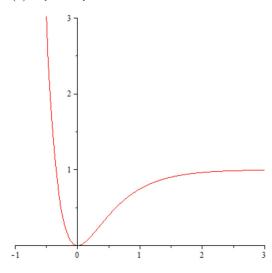
 \Rightarrow relative maximum at $x_1 = 1$ no relative minimum

ii)
$$f''(x) = 0 \text{ at } x_2 = 2$$

 $f'''(x_2) = \frac{1}{e^2} \neq 0$

point of inflection at $x_2 = 2$

e) *
$$f(x) = (1 - e^{-2x})^2 = 1 - 2 e^{-2x} + e^{-4x}$$



$$f'(x) = 4 (e^{-2x} - e^{-4x})$$

$$f''(x) = 8 (-e^{-2x} + 2 e^{-4x})$$

$$f'''(x) = 16 (e^{-2x} - 4 e^{-4x})$$

i)
$$f'(x) = 0$$
 at $x_1 = 0$
 $f''(x_1) = 8 > 0$

relative minimum at $x_1 = 0$ no relative maximum

ii)
$$f''(x) = 0$$
 at $x_2 = \frac{\ln(2)}{2} = 0.34...$
 $f'''(x_2) = -8 \neq 0$

point of inflection at $x_2 = 0.34...$

$$\begin{split} f) * & V'(r) = -D\left(-\frac{2a}{r^2} + \frac{2a^2}{r^3}\right) = \frac{2aD}{r^2}\left(1 - \frac{a}{r}\right) \\ & V''(r) = -D\left(\frac{4a}{r^3} - \frac{6a^2}{r^4}\right) = \frac{2aD}{r^3}\left(\frac{3a}{r} - 2\right) \\ & V'''(r) = -D\left(-\frac{12a}{r^4} + \frac{24a^2}{r^5}\right) = \frac{12aD}{r^4}\left(1 - \frac{2a}{r}\right) \end{split}$$

i)
$$V'(r) = 0$$
 at $r_1 = a$
 $V''(r_1) = \frac{2D}{a^2} > 0$

relative minimum at $r_1 = a$ no relative maximum

ii)
$$V"(r) = 0 \text{ at } r_2 = \frac{3a}{2}$$

$$V"'(r_2) = -\frac{64D}{81a^3} \neq 0$$

point of inflection at $r_2 = \frac{3a}{2}$

15.2 **Relative** maximum at $x_1 = \frac{100}{3} \rightarrow 33 \text{ or } 34$

P(33) = 51'843 CHF

P(34) = 51'816 CHF

 $P(x) \le P(x_1)$ if $x \ne x_1$ as there is no relative minimum

 \Rightarrow P = 51'843 CHF is the **absolute** maximum profit at x = 33.

15.3 (see next page)

15.3
$$\overline{C}(x) = \frac{C(x)}{x} = \frac{1}{4}x + 4 + \frac{100}{x}$$

 $\overline{C}(x)$ has a **relative** minimum at $x_1 = 20$

$$\overline{C}(20) = 14 \text{ CHF}$$

 $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no relative maximum

 $\Rightarrow \overline{C} = 14$ CHF is the **absolute** minimum average cost at x = 20.

15.4 P(x) has a **relative** maximum at $x_1 = 15$ and a **relative** minimum at $x_2 = 20$.

$$P(x_1) = 20'250 \text{ CHF}$$

 $P(x) \le P(x_1)$ if $x \le x_1$ as there is no relative minimum on the interval $x \le x_1$

P(30) = 27'000 CHF > 20'250 CHF (!)

- \Rightarrow P = 27'000 CHF is the **absolute** maximum profit at the endpoint x = 30.
- 15.5 P(x) has a point of inflection at $x_1 = 10$

$$P(10) = 200$$

 \Rightarrow point of inflection (10|200), i.e. when x = 10 (in the year 2020) and P = 200'000 CHF

- 15.6 4th statement a)
 - 3^{rd} statement b)
 - c) 3rd statement