Review exercises 2 Differential calculus, integral calculus

Problems

- R2.1 Decide whether the following statements are true or false:
 - a) "The derivative (derived function) of a function is a function."
 - b) "The derivative (rate of change) of a function at a particular position is a number."
 - c) "The function f has a relative maximum at $x = x_1$ if $f'(x_1) = 0$ and $f''(x_1) > 0$."
 - d) "If $f''(x_2) = 0$ and $f'''(x_2) < 0$, then the function f has a point of inflection at $x = x_2$."
 - e) "If g' = f, then g is an antiderivative of f."
 - f) "f with f(x) = 2x + 20 is an antiderivative of g with $g(x) = x^2$."
 - g) "f with f(x) = 3x has infinitely many antiderivatives."
 - h) "The indefinite integral of a function is a set of functions."
- R2.2 Determine the value $f(x_0)$, the first derivative $f'(x_0)$, and the second derivative $f''(x_0)$ at x_0 for the following functions f:

a)	$f(x) = 4x^2(x^2 - 1)$						
	i) $x_0 = 0$	ii)	$x_0 = -1$				
b)	$f(x) = (-3x^2 + 2x - 1) \cdot e^x$						
	i) $x_0 = 0$	ii)	$x_0 = -2$				
c)	$\mathbf{f}(\mathbf{x}) = (\mathbf{x}^2 + 2) \cdot \mathbf{e}^{-3\mathbf{x}}$						
	i) $x_0 = 1$	ii)	$\mathbf{x}_0 = -\frac{1}{3}$				

R2.3 For the given cost function C(x) and revenue function R(x) determine ...

- i) ... the marginal cost function C'(x).
- ii) ... the marginal revenue function R'(x).
- iii) ... the marginal profit function P'(x).
- a) C(x) = 200 + 40x R(x) = 60x
- b) $C(x) = 100 + 20x + 5x^2$ $R(x) = 100x 2x^2$
- c) $C(x) = 50 + 20x^2 + 3e^{4x}$ $R(x) = 200x e^{-4x^2}$

R2.4 For each function, determine ...

- i) ... the relative maxima and minima.
- ii) ... the points of inflection.
- a) $f(x) = 2x^3 9x^2 + 12x 1$
- b) f(x) as in R2.2 a

R2.5 The total revenue function for a commodity is given by

 $R(x) = 36x - 0.01x^2$

Determine the maximum revenue if production is limited to at most 1500 units.

R2.6 If the total cost function for a product is

 $C(x) = 100 + x^2$

producing how many units x will result in a minimum average cost? Determine the minimum average cost.

R2.7 A firm can produce only 1000 units per month. The monthly total cost (in CHF) ist given by

C(x) = 300 + 200x

where x is the number produced. If the total revenue (in CHF) is given by

 $R(x) = 250x - \frac{1}{100}x^2$

how many items should the firm produce for maximum profit? Determine the maximum profit.

R2.8 Determine the indefinite integrals below:

a) $\int (x^4 - 3x^3 - 6) dx$ b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx$

R2.9 The equation of the third derivative f " of a function f is given as follows:

f'''(x) = 3x + 1

Determine the equation of the function f such that f''(0) = 0, f'(0) = 1, f(0) = 2

- R2.10 If the marginal cost (in CHF) for producing a product is C'(x) = 5x + 10, with a fixed cost of 800 CHF, what will be the cost of producing 20 units?
- R2.11 A certain firm's marginal cost C'(x) and the derivative of the average revenue $\overline{R}'(x)$ are given as follows:

C'(x) = 6x + 60

$$\overline{\mathbf{R}}'(\mathbf{x}) = -1$$

The total cost and revenue of the production of 10 items are 1000 CHF and 1700 CHF, respectively.

How many units will result in a maximum profit? Determine the maximum profit.

R2.12 The demand function (price in CHF) for a product is

 $p = f(x) = 49 - x^2$

and the supply function (price in CHF) is

p = g(x) = 4x + 4

Determine the equilibrium point and both the consumer's and the producer's surplus there.

R2.13 (see next page)

R2.13 The demand function (price in CHF) for a product is

$$p = f(x) = 110 - ax^2$$

and the supply function (price in CHF) is

$$p = g(x) = 2 - \frac{6}{5}x + bx^2$$

with unknown parameters a and b. The equilibrium price is 10 CHF, and the producer's surplus is 73.33 CHF. Determine the two unknown parameters a and b.

R2.1	a)	true		b)	true	c)	false		
	d)	true		e)	true	f)	false		
	g)	true		h)	true				
R2.2	a)	$f'(x) = 16x^3 - 8x$ $f''(x) = 48x^2 - 8$							
		i)			f'(0) = 0	f"(0) =	- 8		
		ii)	f(-1) = 0		f'(-1) = -8				
	b)	f'(x) =	$(-3x^2 - 4x)$ = $(-3x^2 - 10)$	$(+1) \cdot e^x$		1 (1)			
		i)			f'(0) = 1	f "(0) =			
		ii)	f(-2) = -1 f'(-2) = - f''(-2) = -	$17 \cdot e^{-2} =$ $-3 \cdot e^{-2} =$	-2.300 -0.406	1 (0)			
	c)		$f'(x) = (-3x^2 + 2x - 6) \cdot e^{-3x}$ $f''(x) = (9x^2 - 12x + 20) \cdot e^{-3x}$						
		i)	$f(1) = 3 \cdot c$ f'(1) = -7 f''(1) = 1	$7 \cdot e^{-3} = -$	0.348				
		ii)	$f\left(-\frac{1}{3}\right) = \frac{1}{5}$ $f'\left(-\frac{1}{3}\right) = f''\left(-\frac{1}{3}\right) = \frac{1}{5}$	-7e = -	19.027				
R2.3	a)	i)	C'(x) = 4	0			ii)	R'(x) = 60	
		iii)	P'(x) = 2	0					
	b)	i)	C'(x) = 2	20 + 10x	Σ.		ii)	R'(x) = 100 - 4x	
		iii)	P'(x) = 8	0 - 14x					
	c)	i)	C'(x) = 4	0x + 12	2e ^{4x}		ii)	$R'(x) = 200 + 8x e^{-4x^2}$	
		iii)	P'(x) = 20	00 - 40	$x - 12e^{4x} + 8x e^{-4x}$	x ²			
R2.4	a)	f'(x) =	$= 2x^{3} - 9x^{2} + 12x - 1$ = $6x^{2} - 18x + 12$ = $12x - 18$ = 12						
		i)	f'(x) = 0 $f''(x_1) = -$ $f''(x_2) = -$	- 6 < 0	1 and $x_2 = 2$	$\begin{array}{l} \Rightarrow \\ \Rightarrow \\ \text{relative maximum at } x_1 = 1 \\ \Rightarrow \\ \text{relative minimum at } x_2 = 2 \end{array}$			
		ii)	f "(x) = 0) at $x_3 =$	$\frac{3}{2}$				
			f '''(x ₃) =	12 ≠ 0		⇒	point o	f inflection at $x_3 = \frac{3}{2}$	

 $f(x) = 4x^2(x^2 - 1)$ b) $f'(x) = 16x^3 - 8x = 8x(2x^2 - 1)$ $f''(x) = 48x^2 - 8 = 8(6x^2 - 1)$ f'''(x) = 96xf'(x) = 0 at $x_1 = 0$, $x_2 = \frac{1}{\sqrt{2}}$, and $x_3 = -\frac{1}{\sqrt{2}}$ i) $f''(x_1) = -8 < 0$ $f''(x_2) = 16 > 0$ $f''(x_2) = 16 > 0$ ⇒ ⇒ relative maximum at $x_1 = 0$ relative minimum at $x_2 = \frac{1}{\sqrt{2}}$ relative minimum at $x_3 = -\frac{1}{\sqrt{2}}$ $f''(x_3) = 16 > 0$ ⇒ f''(x) = 0 at $x_3 = \frac{1}{\sqrt{6}}$ ii) $f'''(x_3) = \frac{96}{\sqrt{6}} \neq 0$ point of inflection at $x_3 = \frac{1}{\sqrt{6}}$ \Rightarrow

R2.5 Relative maximum at x = 1800 lies outside the possible interval $0 \le x \le 1500$ R(1500) = 31'500 CHF > R(0) = 0 CHF \Rightarrow R = 31'500 CHF is the absolute maximum revenue at x = 1500.

- R2.6 $\overline{C}(x) = \frac{C(x)}{x} = \frac{100}{x} + x$ $\overline{C}(x)$ has a **relative** minimum at $x_1 = 10$ $\overline{C}(10) = 20$ CHF $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no relative maximum $\Rightarrow \overline{C} = 20$ CHF is the **absolute** minimum average cost at x = 10.
- R2.7 $P(x) = R(x) C(x) = -\frac{1}{100}x^2 + 50x 300$ P(x) has a **relative** maximum at x₁ = 2500. This is outside the possible interval $0 \le x \le 1000$ P(1000) = 39'700 CHF > P(0) = - 300 CHF \Rightarrow P = 39'700 CHF is the **absolute** maximum profit at the endpoint x = 1000.
- R2.8 a) $\int (x^4 3x^3 6) dx = \frac{x^5}{5} \frac{3x^4}{4} 6x + C$ b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx = \frac{x^7}{14} + \frac{2}{9x^3} + C$

R2.9 $f(x) = \frac{x^4}{8} + \frac{x^3}{6} + x + 2$

R2.10 C(20) = 2000 CHF

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = \frac{5}{2}x^2 + 10x + 800$

R2.11 P = 800 CHF is the absolute maximum profit at x = 15 units.

Hints:

- Determine the cost function $C(x) \Rightarrow C(x) = 3x^2 + 60x + 100$
- Determine the average revenue function $\overline{R}(x) \Rightarrow \overline{R}(x) = -x + C$
- Determine the revenue function $R(x) \Rightarrow R(x) = -x^2 + 180x$
- Determine the profit function $P(x) \Rightarrow P(x) = -4x^2 + 120x 100$
- Determine the relative maximum of the profit function P(x).
- Check if the relative maximum is the absolute maximum.

 $\begin{array}{ll} \text{R2.12} & \text{Equilibrium quantity} & x = 5 \\ \text{Equilibrium price} & p = 24 \text{ CHF} \\ \text{Consumer's surplus} & \text{CS} = 83.33 \text{ CHF} \\ \text{Producer's surplus} & \text{PS} = 50 \text{ CHF} \end{array}$

R2.13 a = 1b = 0.2