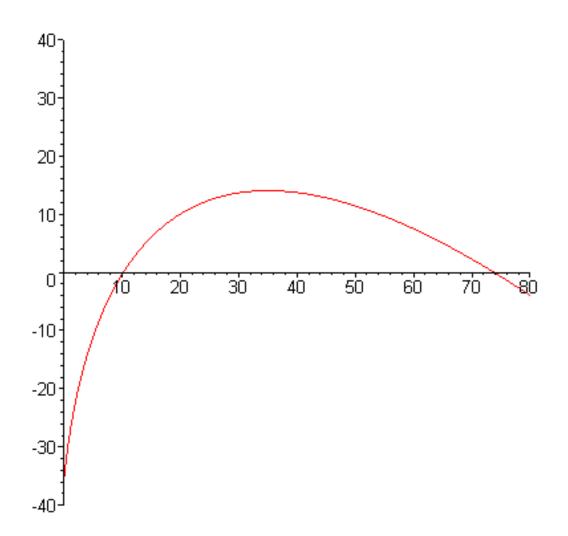
Function f				
f: $D \to \mathbb{R}$	where $D \subseteq \mathbb{R}$			
$x \mapsto y = f(x)$				

Ex.: $f(x) = 24\sqrt{x+1} - 2x - 60$



What do we want to know?

Slope of the tangent to the graph of the function f at a certain point $A(x_0 | f(x_0))$.

Why do we want to know the slope?

- increasing (slope > 0), decreasing (slope < 0)
- relative **maximum/minimum** (slope = 0)
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Applications in economics

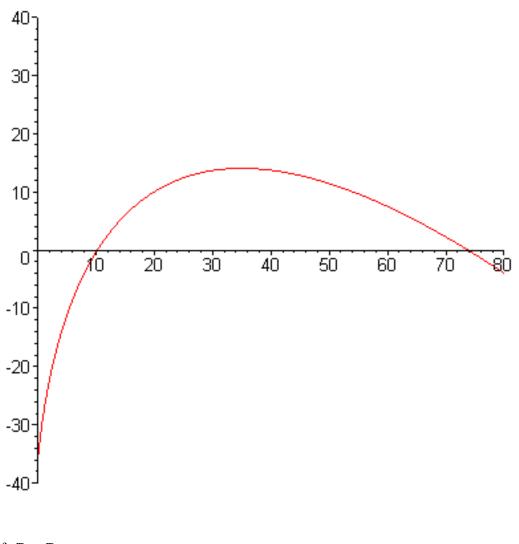
- tendency of costs/revenue/profit
- maximum/minimum of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

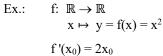
Definition

The slope of the tangent to the graph of f through the point $A(x_0 | f(x_0))$ is called the **derivative** (or **rate of change**) of f at x_0 , denoted f '(x_0).

How can we determine the slope?

The slope of the **secant** through the points $A(x_0 | f(x_0))$ and $B(x_0+\Delta x | f(x_0+\Delta x))$ tends towards the slope of the **tangent** through $A(x_0 | f(x_0))$ as Δx tends towards 0.





Definition

Suppose that the derivative (rate of change) $f'(x_0)$ exists for all $x_0 \in D_1$, where $D_1 \subseteq D$.

The function f'

 $\begin{array}{rl} f': & D_1 \to \mathbb{R} \\ & x & \mapsto & y = f'(x) \end{array}$

is called the derivative (or derived function) of f.

 $\begin{array}{ll} \text{Ex. 1:} & f \colon \ \mathbb{R} \to \mathbb{R} & f' \colon \ \mathbb{R} \to \mathbb{R} \\ & x \mapsto \ y = f(x) = x^2 & x \mapsto \ y = f'(x) = 2x \end{array}$

Ex. 2: f:
$$D \to \mathbb{R}$$

 $x \mapsto y = f(x) = 24\sqrt{x+1} - 2x - 60$
f': $D_1 \to \mathbb{R}$
 $x \mapsto y = f'(x) = \frac{12}{\sqrt{x+1}} - 2$

