Exercises 3 Function Domain, codomain, range, graph

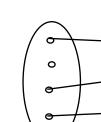
Objectives

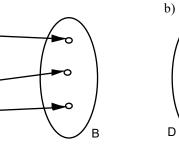
- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

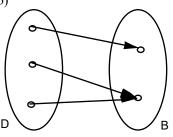
Problems

a)

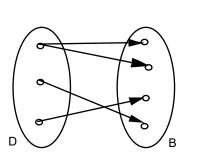
3.1 Which of the following relations are functions? Explain your answer.

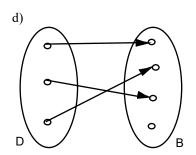






c)





- e) D = set of all modules of the FHGR Tourism bachelor programme B = set of all FHGR lecturers
 f: D → B, m ↦ l = f(m) = lecturer of m
- f) $D = \{1990, 1991, \dots, 1999, 2000\}$ B = set of all human beings aged between 20 and 30 f: D \rightarrow B, y \mapsto p = f(y) = person who was born in the year y
- g) D = set of all human beings aged between 20 and 30 $B = \{1990, 1991, \dots, 1999, 2000\}$ f: $D \rightarrow B, p \mapsto y = f(p) = \text{year of birth of person p}$
- h) f: $\mathbb{R} \to \mathbb{R}, x \mapsto y = f(x) = x^2$
- i) f: ℝ⁺ → ℝ, x ↦ y = f(x) = number whose square is x
 Notice:
 ℝ⁺ is the set of all positive real numbers, i.e. ℝ⁺ = {x: x∈ℝ and x > 0}.
- j) f: $\mathbb{R} \to \mathbb{R}$, t \mapsto b = f(t) = bank account balance at time t

3.2 (see next page)

- 3.2 Determine the range E of the functions below:
 - a) $D = \{$ January, February, March, ..., December $\}$ $B = \{A, B, C, ..., Z\}$ f: $D \rightarrow B, m \mapsto l = f(m) = initial letter of m$
 - b) D = set of all neighbouring countries of Switzerland
 B = set of all European cities
 c: D → B, x ↦ y = c(x) = capital of neighbouring country x
 - c) function f in problem 3.1 g)
 - d) function f in problem 3.1 h)

3.3

a)

f: $\mathbb{R} \to \mathbb{R}, x \mapsto f(x) = x^3 - x$

Determine the following values:

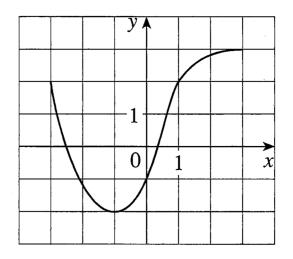
- i) f(1) ii) f(-2) iii) f(a)iv) $f(b^2)$ v) f(a - b) vi) $f(x^3 - x)$
- b) g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \mapsto g(x) = \frac{x^2}{x+1}$

Determine the following values:

i) g(2) ii) g(-3) iii) g(a)

iv) $g(b^2)$ v) g(a - b) vi) $g\left(\frac{x^2}{x+1}\right)$

3.4 The graph of a function f ist given as follows:



- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range E of f.

L F F

- 3.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) The range of the function f: $\{x: x \in \mathbb{R} \text{ and } x \ge 4\} \to \mathbb{R}, x \mapsto y = f(x) = \sqrt{x 4}$, is the set ...

$$\begin{array}{c} & \dots \ \{x: x \in \mathbb{R} \ \text{and} \ x \ge 4\} \\ & \dots \ \{y: y \in \mathbb{R} \ \text{and} \ y \ge 4\} \\ & \dots \ \mathbb{R} \\ & \dots \ \mathbb{R}_0^+ \end{array}$$

b) f cannot be a function if ...

... the domain of f is no number set.

... the codomain of f contains more elements than the domain of f.

... the domain of f contains more elements than the codomain of f.

- $| \qquad ... at least one element of the domain of f has more than one image.$ If f is such that f(x) = x for all elements x of the domain, it can be concluded that ...
- c)

... the domain of f is the same set as the codomain of f.

... the range of f is the same set as the codomain of f.

... the domain and the codomain of f contain the same number of elements.

... the domain and the range of f contain the same number of elements.

Answers

1 1115 11	CI 5	
3.1	a)	no function No element (instead of exactly one element) of B is associated to one of the elements of D.
	b)	function
	c)	no function Two elements (instead of exactly one element) of B are associated to one of the elements of D.
	d)	function
	e)	no function More than one element (instead of exactly one element) of B are associated to some elements of D.
	f)	no function Many elements (instead of exactly one element) of B are associated to each element of D.
	g)	function
	h)	function
	i)	no function Two elements (instead of exactly one element) of \mathbb{R} are associated to each element of \mathbb{R}^+ .
	j)	function
3.2	a)	$E = \{A, D, F, J, M, N, O, S\}$
	b)	E = {Berlin, Vienna, Vaduz, Rome, Paris}
	c)	$\mathbf{E} = \mathbf{B}$
	d)	$E = \mathbb{R}_0^+$
		Notice: - \mathbb{R}_{0^+} is the set of all positive real numbers, including zero, i.e. $\mathbb{R}_{0^+} = \{x: x \in \mathbb{R} \text{ and } x \ge 0\}.$
3.3	a)	i) $f(1) = 1^3 - 1 = 0$
		ii) $f(-2) = (-2)^3 - (-2) = -6$
		iii) $f(a) = a^3 - a$
		iv) $f(b^2) = (b^2)^3 - b^2 = b^6 - b^2$
		v) $f(a - b) = (a - b)^3 - (a - b) = a^3 - 3a^2b + 3ab^2 - b^3 - a + b$
		vi) $f(x^3 - x) = (x^3 - x)^3 - (x^3 - x) = x^9 - 3x^7 + 3x^5 - 2x^3 + x$
	b)	i) $g(2) = \frac{2^2}{2+1} = \frac{4}{3}$
		ii) $g(-3) = \frac{(-3)^2}{-3+1} = -\frac{9}{2}$
		iii) $g(a) = \frac{a^2}{a+1}$
		iv) $g(b^2) = \frac{(b^2)^2}{b^2 + 1} = \frac{b^4}{b^2 + 1}$
		v) $g(a - b) = \frac{(a - b)^2}{(a - b) + 1} = \frac{a^2 - 2ab + b^2}{a - b + 1}$
		(<i>a</i> - <i>b</i>)+1 <i>a</i> - <i>b</i> +1 (<i>a</i> - <i>b</i>)+1 <i>a</i> - <i>b</i> +1

vi)
$$g\left(\frac{x^2}{x+1}\right) = \frac{\left(\frac{x^2}{x+1}\right)^2}{\left(\frac{x^2}{x+1}\right)+1} = \frac{x^4}{x^3+2x^2+2x+1}$$

- 3.4 a) f(-1) = -2
 - b) $f(2) \approx 2.8$
 - c) $x_1 = -3, x_2 = 1$
 - d) $x_1 \approx -2.5, x_2 \approx 0.3$
 - e) $D = \{x: x \in \mathbb{R} \text{ and } -3 \le x \le 3\} = [-3,3]$
 - f) $E = \{y: y \in \mathbb{R} \text{ and } -2 \le y \le 3\} = [-2,3]$
- 3.5 a) 4^{th} statement

c) 4th statement