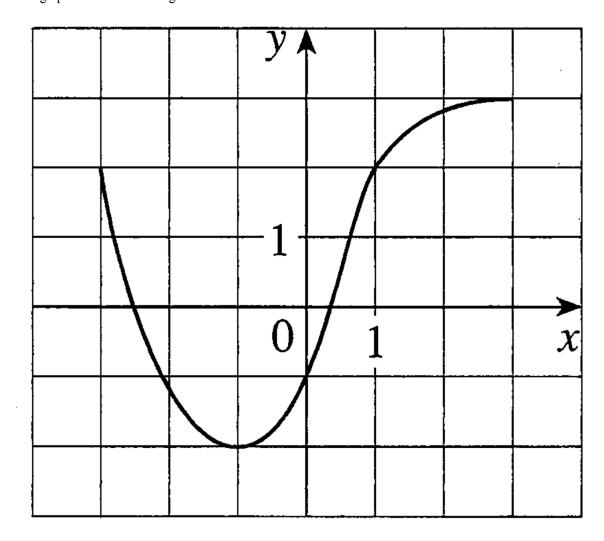
Exercises 13 Derivative


Derivative (rate of change), derivative (derived function) of constant/power/exponential functions

Objectives

- be able to estimate a derivative (rate of change) out of the graph of a function.
- be able to state the derivative (rate of change) of a constant and a linear function.
- be able to determine the derivative (derived function) of a constant and a linear function.
- be able to determine the derivative (derived function) of a basic power and a basic exponential function.
- be able to determine a derivative (rate of change) of a basic power and a basic exponential function.

Problems

13.1 The graph of a function f ist given as follows:

Estimate the derivative (rate of change) $f'(x_0)$ at the given position x_0 :

- a) $x_0 = -1$
- b) $x_0 =$
- c) $x_0 = 1$
- d) $x_0 = -2$

Hints:

- Draw the tangent to the graph of f at the given position x_0 .
- Choose two points on the tangent, and estimate their coordinates.
- Determine the slope of the tangent out of the estimated coordinates of the two points.

For each of the following functions $f: \mathbb{R} \to \mathbb{R}, x \mapsto y = f(x) = ...$

- i) ... draw the graph of f.
- ii) ... state the derivative (rate of change) $f'(x_0)$ at the given position x_0 .

a) f(x) = 3

 $x_0 = 2$

b) $f(x) = c \ (c \in \mathbb{R})$

any $x_0 \in \mathbb{R}$

c) f(x) = 2x - 3

 $x_0 = 4$

d) $f(x) = mx + q \ (m \in \mathbb{R} \setminus \{0\}, q \in \mathbb{R})$ any $x_0 \in \mathbb{R}$

Hint:

- If the graph of a function f is a straight line, the derivative (rate of change) $f'(x_0)$ is the slope of the straight line and does not depend on the position x_0 .

13.3 Determine f'(x):

a) f(x) = 3

b) f(x) = 0

c) f(x) = -1

 $d) f(x) = x^3$

e) $f(x) = x^4$

 $f(x) = x^5$

g) $f(x) = x^{17}$

h) $f(x) = x^{200}$

i) $f(x) = x^{100'001}$

 $j) f(x) = x^{-1}$

k) $f(x) = x^{-2}$

1) $f(x) = x^{-17}$

 $f(x) = \frac{1}{x}$

 $f(x) = \frac{1}{x^3}$

o) $f(x) = \frac{1}{x^{99}}$

 $p) f(x) = 3^x$

 $q) f(x) = 5^x$

r) $f(x) = \left(\frac{2}{3}\right)^x$

Determine the derivative (rate of change) $f'(x_0)$ of the function f at the indicated position x_0 :

a) f(x) = x

i) $x_0 = 0$

ii) $x_0 = 1$

iii) $x_0 = -2$

b) $f(x) = x^5$

i) $x_0 = 0$

ii) $x_0 = 2$

iii) $x_0 = -\frac{2}{3}$

c) $f(x) = x^{-4}$

i) $x_0 = -1$

ii) $x_0 = -\frac{1}{2}$

iii) $x_0 = 0$

d) $f(x) = \left(\frac{2}{3}\right)^x$

i) $x_0 = 0$

ii) $x_0 = 1$

iii) $x_0 = -2$

13.5 * The derivative (rate of change) $f'(x_0)$ of f at the position x_0 can be determined by looking at the secant through the points $A(x_0 \mid f(x_0))$ and $B(x_0 + \Delta x \mid f(x_0 + \Delta x))$ of the graph of f. The slope of this secant tends towards the slope of the tangent through $A(x_0 \mid f(x_0))$ as Δx tends towards 0.

It has been shown in class how to determine $f'(x_0)$ for the quadratic function $f(x) = x^2$.

Find $f'(x_0)$ for the following functions f:

a) $f(x) = x^3$

 $b) f(x) = \frac{1}{x^2}$

13.6 (see next page)

13.6		which statements are true or false. Put a mark into the corresponding box. problem a) to c), exactly one statement is true.
	a)	The derivative (rate of change) of a function f at the position x_0 is a
		real number function tangent graph.
	b)	The derivative (derived function) f' of a function f is a
		real number function tangent graph.
	c)	$f'(x_0)$ is the slope of the
		secant through the points $(0 0)$ and $(x_0 f(x_0))$. secant through the points $(x_0+\Delta x f(x_0+\Delta x))$ and $(x_0 f(x_0))$. tangent to the graph of f through $(x_0 f(x_0))$. tangent to the graph of f' through $(x_0 f(x_0))$.

Answers

13.1 a)
$$f'(-1) \approx 0$$

b)
$$f'(0) \approx 2$$

c)
$$f'(1) \approx \frac{3}{2}$$

d)
$$f'(-2) \approx -\frac{5}{3}$$

ii)
$$f'(2) = 0$$

ii)
$$f'(x_0) = 0$$

ii)
$$f'(4) = 2$$

ii)
$$f'(x_0) = m$$

13.3 a)
$$f'(x) = 0$$

b)
$$f'(x) = 0$$

c)
$$f'(x) = 0$$

d)
$$f'(x) = 3x^2$$

e)
$$f'(x) = 4x^3$$

f)
$$f'(x) = 5x^4$$

g)
$$f'(x) = 17x^{16}$$

h)
$$f'(x) = 200x^{199}$$

i)
$$f'(x) = 100'001x^{100'000}$$

j)
$$f'(x) = -x^{-2}$$

k)
$$f'(x) = -2x^{-3}$$

1)
$$f'(x) = -17x^{-18}$$

m)
$$f'(x) = -\frac{1}{x^2}$$

n)
$$f'(x) = -\frac{3}{x^4}$$

o)
$$f'(x) = -\frac{99}{x^{100}}$$

p)
$$f'(x) = 3^x \ln(3)$$

q)
$$f'(x) = 5^x \ln(5)$$

r)
$$f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$$

13.4 a)
$$f'(x) = 1$$

i)
$$f'(0) = 1$$

ii)
$$f'(1) = 1$$

iii)
$$f'(-2) = 1$$

b)
$$f'(x) = 5x^4$$

i)
$$f'(0) = 0$$

ii)
$$f'(2) = 80$$

iii)
$$f'(-\frac{2}{3}) = \frac{80}{81}$$

c)
$$f'(x) = -\frac{4}{x^5}$$

i)
$$f'(-1) = 4$$

ii)
$$f'(-\frac{4}{3}) = \frac{243}{256}$$

ii)

iii) f'(0) is not defined (division by zero)

d)
$$f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$$

i)
$$f'(0) = \ln\left(\frac{2}{3}\right)$$

$$f'(1) = \frac{2}{3} \ln(\frac{2}{3})$$

iii)
$$f'(-2) = \frac{9}{4} \ln(\frac{2}{3})$$

13.5 * a)
$$f'(x_0) = 3x_0^2$$

b)
$$f'(x_0) = -\frac{2}{x_0^3}$$