Review exercises 2 Differential calculus, integral calculus

Problems

- R2.1 Decide whether the statements below are true or false:
 - a) "The derivative (derived function) of a function is a function."
 - b) "The derivative (rate of change) of a function at a particular position is a number."
 - c) "The function f has a local maximum at $x = x_1$ if $f'(x_1) = 0$ and $f''(x_1) > 0$."
 - d) "If $f''(x_2) = 0$ and $f'''(x_2) < 0$, then the function f has a point of inflection at $x = x_2$."
 - e) "If g' = f, then g is an antiderivative of f."
 - f) "f with f(x) = 2x + 20 is an antiderivative of g with $g(x) = x^2$."
 - g) "f with f(x) = 3x has infinitely many antiderivatives."
 - h) "The indefinite integral of a function is a set of functions."
- R2.2 Determine the value $f(x_0)$, the first derivative $f'(x_0)$, and the second derivative $f''(x_0)$ at x_0 for the functions f below:

a)	$f(x) = 4x^2(x^2 - 1)$				
	i)	$x_0 = 0$	ii)	$x_0 = -1$	
b)	$f(x) = (-3x^2 + 2x - 1) \cdot e^x$				
	i)	$x_0 = 0$	ii)	$x_0 = -2$	
c)	$f(x) = (x^2 + 2) \cdot e^{-3x}$				
	i)	$\mathbf{x}_0 = 1$	ii)	$\mathbf{x}_0 = -\frac{1}{3}$	

R2.3 For the given cost function C(x) and revenue function R(x) determine ...

- i) ... the marginal cost function C'(x).
- ii) ... the marginal revenue function R'(x).
- iii) ... the marginal profit function P'(x).
- a) C(x) = 200 + 40x R(x) = 60x
- b) $C(x) = 100 + 20x + 5x^2$ $R(x) = 100x 2x^2$
- c) $C(x) = 50 + 20x^2 + 3e^{4x}$ $R(x) = 200x e^{-4x^2}$

R2.4 For each function, determine ...

- i) ... the local maxima and minima.
- ii) ... the points of inflection.
- a) $f(x) = 2x^3 9x^2 + 12x 1$
- b) f(x) as in R2.2 a)

R2.5 (see next page)

R2.5 The total revenue function (revenue in CHF) for a commodity is given by

 $R(x) = 36x - 0.01x^2$

Determine the maximum revenue if production is limited to at most 1500 units.

R2.6 If the total cost function (costs in CHF) for a product is

 $C(x) = 100 + x^2$

producing how many units x will result in a minimum average cost? Determine the minimum average cost.

R2.7 A firm can produce only 1000 units per month. The monthly total cost (in CHF) ist given by

C(x) = 300 + 200x

where x is the number produced. If the total revenue (in CHF) is given by

 $R(x) = 250x - \frac{1}{100}x^2$

how many items should the firm produce for a maximum profit? Determine the maximum profit.

R2.8 Determine the indefinite integrals below:

a) $\int (x^4 - 3x^3 - 6) dx$ b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx$

R2.9 The equation of the third derivative f " of a function f is given as follows:

f'''(x) = 3x + 1

Determine the equation of the function f such that f''(0) = 0, f'(0) = 1, f(0) = 2

- R2.10 If the marginal cost (in CHF) for producing a product is C'(x) = 5x + 10, with a fixed cost of 800 CHF, what will be the cost of producing 20 units?
- R2.11 A certain firm's marginal cost C'(x) and the derivative of the average revenue \overline{R} '(x) are given as follows:

C'(x) = 6x + 60

$$\overline{\mathbf{R}}'(\mathbf{x}) = -1$$

The total cost and revenue of the production of 10 items are 1000 CHF and 1700 CHF, respectively. How many units will result in a maximum profit? Determine the maximum profit.

R2.12 The demand function (price in CHF) for a product is

 $p = f(x) = 49 - x^2$

and the supply function (price in CHF) is

p = g(x) = 4x + 4

Determine the equilibrium point and both the consumer's and the producer's surplus there.

R2.13 (see next page)

R2.13 The demand function (price in CHF) for a product is

$$p = f(x) = 110 - ax^2$$

and the supply function (price in CHF) is

$$p = g(x) = 2 - \frac{6}{5}x + bx^2$$

with unknown parameters a and b. The equilibrium price is 10 CHF, and the producer's surplus is 73.33 CHF (rounded).

Determine the two unknown parameters a and b.

Hint:

- Use the unrounded value $\left(73 + \frac{1}{3}\right)$ CHF = $\frac{220}{3}$ CHF for the producer's surplus.

R2.1	a)	true		b)	true	c)	false		
	d)	true		e)	true	f)	false		
	g)	true		h)	true				
R2.2	a)	$f'(x) = 16x^3 - 8x$ $f''(x) = 48x^2 - 8$							
		i)	f(0) = 0		f'(0) = 0	f "(0) =	- 8		
		ii)	f(-1) = (0	f'(-1) = - 8	f"(-1)	= 40		
	b)	$f'(x) = (-3x^2 - 4x + 1) \cdot e^x$ $f''(x) = (-3x^2 - 10x - 3) \cdot e^x$							
		i)	f(0) = -	1	f'(0) = 1	f "(0) =	-3		
		ii)	f'(-2) =		-2.300 -0.406 0.676				
	c)	$f'(x) = (-3x^2 + 2x - 6) \cdot e^{-3x}$ $f''(x) = (9x^2 - 12x + 20) \cdot e^{-3x}$							
		i)	f'(1) = -	$\cdot e^{-3} = 0.1$ -7 $\cdot e^{-3} = -1$ 17 $\cdot e^{-3} = -1$	0.348				
		ii)		= -7e = -	738 19.027 67.957				
R2.3	a)	i)	C'(x) =	40			ii)	R'(x) = 60	
		iii)	P'(x) = 2	20					
	b)	i)	C'(x) =	20 + 10x	ζ.		ii)	R'(x) = 100 - 4x	
		iii)	P'(x) = 3	80 - 14x					
	c)	i)	C'(x) =	40x + 12	$2e^{4x}$		ii)	$R'(x) = 200 + 8x \ e^{-4x^2}$	
		iii)	$\mathbf{P}'(\mathbf{x}) = \mathbf{x}$	200 – 40	$1x - 12e^{4x} + 8x e^{-4}$	x ²			
R2.4	a)	f'(x) =	$2x^{3} - 9x^{2} + 3x^{2} - 18x^{2} + 3x^{2} - 18x^{2} + 12x^{2} - 18x^{2} + 12x^{2} - 18x^{2} + 12x^{2} $	+ 12					
		i)	$f'(x) = f''(x_1) = f''(x_2) = f$	- 6 < 0	1 and $x_2 = 2$	\Rightarrow \Rightarrow		aximum at $x_1 = 1$ inimum at $x_2 = 2$	
		ii)	f "(x) =	$0 \text{ at } x_3 =$	$=\frac{3}{2}$				
			f '''(x ₃) =	= 12 ≠ 0		⇒	point o	f inflection at $x_3 = \frac{3}{2}$	

b)

 $f(x) = 4x^{2}(x^{2} - 1)$ $f'(x) = 16x^{3} - 8x = 8x(2x^{2} - 1)$ $f''(x) = 48x^{2} - 8 = 8(6x^{2} - 1)$ f'''(x) = 96xi) $f'(x) = 0 \text{ at } x_{1} = 0, x_{2} = \frac{1}{\sqrt{2}}, \text{ and } x_{3} = -\frac{1}{\sqrt{2}}$ $f''(x_{1}) = -8 < 0 \qquad \Rightarrow \qquad \text{local maximum at } x_{1} = 0$ $f''(x_{2}) = 16 > 0 \qquad \Rightarrow \qquad \text{local minimum at } x_{2} = \frac{1}{\sqrt{2}}$ $f''(x_{3}) = 16 > 0 \qquad \Rightarrow \qquad \text{local minimum at } x_{3} = -\frac{1}{\sqrt{2}}$ ii) $f''(x) = 0 \text{ at } x_{4} = \frac{1}{\sqrt{6}} \text{ and } x_{5} = -\frac{1}{\sqrt{6}}$ $f'''(x_{4}) = \frac{96}{\sqrt{6}} \neq 0 \qquad \Rightarrow \qquad \text{point of inflection at } x_{4} = \frac{1}{\sqrt{6}}$ $f'''(x_{5}) = -\frac{96}{\sqrt{6}} \neq 0 \qquad \Rightarrow \qquad \text{point of inflection at } x_{5} = -\frac{1}{\sqrt{6}}$

- R2.5 Local maximum at x = 1800 lies outside the possible interval $0 \le x \le 1500$ R(1500) = 31'500 CHF > R(0) = 0 CHF \Rightarrow R = 31'500 CHF is the global maximum revenue at x = 1500.
- R2.6 $\overline{C}(x) = \frac{C(x)}{x} = \frac{100}{x} + x$ $\overline{C}(x)$ has a **local** minimum at $x_1 = 10$ $\overline{C}(10) = 20$ CHF $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no local maximum $\Rightarrow \overline{C} = 20$ CHF is the **global** minimum average cost at x = 10.
- R2.7 $P(x) = R(x) C(x) = -\frac{1}{100}x^2 + 50x 300$ P(x) has a **local** maximum at x₁ = 2500. This is outside the possible interval $0 \le x \le 1000$ P(1000) = 39'700 CHF > P(0) = - 300 CHF \Rightarrow P = 39'700 CHF is the **global** maximum profit at the endpoint x = 1000.
- R2.8 a) $\int (x^4 3x^3 6) dx = \frac{x^5}{5} \frac{3x^4}{4} 6x + C$ b) $\int \left(\frac{1}{2}x^6 - \frac{2}{3x^4}\right) dx = \frac{x^7}{14} + \frac{2}{9x^3} + C$
- R2.9 $f(x) = \frac{x^4}{8} + \frac{x^3}{6} + x + 2$
- R2.10 C(20) = 2000 CHF

Hint:

- First, determine the cost function $C(x) \Rightarrow C(x) = \frac{5}{2}x^2 + 10x + 800$

R2.11 (see next page)

R2.11 P = 800 CHF is the global maximum profit at x = 15 units.

Hints:

- Determine the cost function $C(x) \Rightarrow C(x) = 3x^2 + 60x + 100$
- Determine the average revenue function $\overline{R}(x) \Rightarrow \overline{R}(x) = -x + C$
- Determine the revenue function $R(x) \Rightarrow R(x) = -x^2 + 180x$
- Determine the profit function $P(x) \Rightarrow P(x) = -4x^2 + 120x 100$
- Determine the local maxima of the profit function P(x).
- Check if one of the local maxima is the global maximum.

R2.12	Equilibrium quantity	$\mathbf{x} = 5$		
	Equilibrium price	p = 24 CHF		
	Consumer's surplus	CS = 83.33 CHF (rounded)		
	Producer's surplus	PS = 50 CHF		

R2.13 a = 1b = 0.2