Exercises 1 Sets

Set, element, empty set, subset, universal set, intersection, union, complement

Objectives

- know and understand what a set, an element of a set, an empty set, a subset, an intersection, a union, and a complement are.
- know and understand the illustration of a set in a Venn diagram.
- be able to perform basic set operations.

Problems

1.1	Look at the sets	s A. F	3. and C:

A = Set of all cities of the world

B = Set of all European cities

C = Set of all coastal cities of the world

Find at least five elements of the following sets:

- a) $B \cap C$
- b) B\C
- c) C \ B
- d) $A \setminus (B \cup C)$
- 1.2 You will find a pdf-file with scanned pages of the textbook Harshbarger/Reynolds* on Moodle:

"Algebraic Concepts (Harshbarger/Reynolds)"

(pages 2 to 55 of chapter "0 Algebraic Concepts" and pages A1 to A5)

Go to section "0.1 Sets" (pages 2 to 9).

- a) Study the theory (pages 2 to 6).
- b) Do the odd-numbered exercises 1 to 59 (pages 6 to 9).

*Harshbarger, R.J., Reynolds, J.J.: Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company, Boston / New York 2007, 8th edition, ISBN 978-0-618-73162-6

1.3 Decide which statements are true or false. Put a mark into the corresponding box.

In each problem a) to c), exactly one statement is true.

a) A = Set of all cities of the world B = Set of all European cities

 $A \cap B = A$ $A \cup B = B$ $B \in A$ $B \subset A$

b) A is any set.

 $A \cup \{\} = \{\}$ $A \cap A = \{\}$ $A \setminus A = \{\}$ $A \setminus A = A$

c) A and B are any s

$(A \cup B) \subset (A \cap B)$
$(A \cap B) = (A \setminus B)$
$(A \cup B) = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$
$(A \cap B) = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$

Hint:

- Draw a Venn diagram.

Answers

- 1.1 a) $B \cap C = \{Lisbon, Copenhagen, Barcelona, Naples, Stockholm, ...\}$
 - b) $B \setminus C = \{London, Paris, Madrid, Berlin, Rome, ...\}$
 - c) C \ B = {Tokyo, San Francisco, Sydney, Rio de Janeiro, Cape Town, ...}
 - d) A \ (B ∪ C) = {Chicago, Mexico City, Nairobi, Beijing, Bogotá, ...}
- 1.2 see Harshbarger/Reynolds (page A1)

Note

- Only answers of the odd-numbered exercises (1, 3, 5, ...) are available.
- 1.3 a) 4th statement
 - b) 3rd statement
 - c) 3rd statement