Exercises 7 Quadratic function and equations Quadratic function

Objectives

- be able to graph a quadratic function out of the vertex form of its equation.
- be able to determine the position of the vertex of a parabola out of the vertex form of the equation of the corresponding quadratic function.
- be able to convert the vertex form of the equation of a quadratic function into the general form.
- know, understand, and be able to apply the method of completing the square.
- be able to convert the general form of the equation of a quadratic function into the vertex form.

Problems

7.1 Look at the easiest possible quadratic function:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

- a) Establish a table of values of f for the interval $-4 \le x \le 4$.
- b) Draw the graph of f in the interval $-4 \le x \le 4$ into a Cartesian coordinate system.
- 7.2 The equation of a general quadratic function can be written in the so-called vertex form below:

$$\begin{array}{ll} f: \ D \ \rightarrow \ \mathbb{R} & (D \subseteq \mathbb{R}) \\ x \ \mapsto & y = f(x) = a(x-u)^2 + v & (a \in \mathbb{R} \setminus \{0\}, u \in \mathbb{R}, v \in \mathbb{R}) \end{array}$$

Investigate the influence of the three parameters \mathbf{a} , \mathbf{u} , and \mathbf{v} on the graph of the quadratic function by always varying only one parameter and keeping the other two parameters constant:

a)	Parameter u	(varying u, keeping a and v constant)
	$\begin{split} y &= f_0(x) = x^2 \\ y &= f_1(x) = (x-2)^2 \end{split}$	(a = 1, u = 0, v = 0) (a = 1, u = 2, v = 0)
	$y = f_2(x) = (x + 1)^2$	(a = 1, u = -1, v = 0)
	·)	

i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.

ii) Describe the influence of the parameter **u** on the graph of the quadratic function.

Parameter v	(varying v, keeping a and u constant)
$\mathbf{y} = \mathbf{f}_0(\mathbf{x}) = \mathbf{x}^2$	(a = 1, u = 0, v = 0)
$y = f_1(x) = x^2 + 3$	(a = 1, u = 0, v = 3)
$y = f_2(x) = x^2 - 2$	(a = 1, u = 0, v = -2)

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter \mathbf{v} on the graph of the quadratic function.

c)	Parameter a	(varying a, keeping u and v constant)
	$y = f_0(x) = x^2$	(a = 1, u = 0, v = 0)
	$y = f_1(x) = 2x^2$	(a = 2, u = 0, v = 0)
	$\mathbf{y} = \mathbf{f}_2(\mathbf{x}) = -2\mathbf{x}^2$	(a = -2, u = 0, v = 0)

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **a** on the graph of the quadratic function.

b)

d) Parameter **a** (varying **a**, keeping u and v constant)

$$\begin{split} y &= f_0(x) = x^2 & (a = 1, u = 0, v = 0) \\ y &= f_1(x) = \frac{1}{2}x^2 & (a = \frac{1}{2}, u = 0, v = 0) \\ y &= f_2(x) = -\frac{1}{2}x^2 & (a = -\frac{1}{2}, u = 0, v = 0) \end{split}$$

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **a** on the graph of the quadratic function.

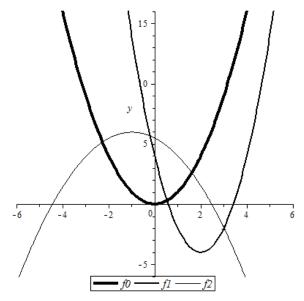
7.3 For each quadratic function f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to h) ...

- i) ... state the parameters a, u, and v.
- ii) ... state the coordinates of the vertex of the graph.
- iii) ... state whether the parabola, i.e. the graph of the function, opens upwards or downwards.
- iv) ... graph the function.
- a) $y = f(x) = (x + 2)^2$ b) $y = f(x) = -3x^2$
- c) $y = f(x) = 2x^2 1$ d) $y = f(x) = -(x 3)^2 + 4$

e)
$$y = f(x) = \frac{1}{2}(x+3)^2 + 2$$
 f) $y = f(x) = -2(x-1)^2 + 5$

g)
$$y = f(x) = \frac{5}{2} - \left(x - \frac{1}{2}\right)^2$$
 h) $y = f(x) = -\frac{1}{2} - 3(2 - x)^2$

7.4 Look at the graphs of the quadratic functions f_0 , f_1 , and f_2 :



Determine the equations of the three functions, i.e. y = f(x) = ...

- 7.5 The equation of a quadratic function f is written in the vertex form. Determine the general form of the equation:
 - a) $y = f(x) = 2(x 3)^2 + 4$ b) $y = f(x) = -(x + 2)^2 3$
 - c) $y = f(x) = x^2 + 5$ d) $y = f(x) = -3(x 4)^2$

7.6 Convert the given equation of a quadratic function into the vertex form by completing the square:

a)
$$y = f(x) = 3x^2 - 12x + 8$$

b) $y = f(x) = x^2 + 6x$
c) $y = f(x) = x^2 - 2x + 1$
d) $y = f(x) = 2x^2 + 12x + 18$
e) $y = f(x) = -2x^2 - 6x - 2$
f) $y = f(x) = x^2 + 1$
g) $y = f(x) = -\frac{1}{2}x^2 + 2x - 2$
h) $y = f(x) = -4x^2 + 24x - 43$
i) $y = f(x) = 2(x - 3)(x + 4)$
j) $y = f(x) = x + 3 - (x + \frac{1}{2})x$

7.7 For the graphs of the quadratic functions f in exercises 7.6 a) to j) ...

- i) ... determine the coordinates of the vertex.
- ii) ... state whether the parabola opens upwards or downwards.

7.8	Decide which statements are true or false. Put a mark into the corresponding box.
	In each problem a) to c), exactly one statement is true.

a) The graph of a quadratic function ...

... always intersects the x-axis in two points.

- ... opens downwards if it has no point in common with the x-axis.
- ... touches the x-axis if there is only one vertex.
- ... is always a parabola.
- b) f is a linear function, and g is a quadratic function. It can be concluded that the graphs of f and g ...
 - ... have no points in common.
 - ... intersect only if the slope of f is not equal to zero.
 - ... cannot have more than two points in common.
 - ... have at least one point in common.
- c) The vertex form of the equation of a quadratic function ...
 - ... is identical with the general form if the vertex of the graph is on the y-axis.
 - ... can be obtained from the general form by multiplying out all the terms.
 - ... does not exist if the graph opens downwards.
 - ... only depends on the position of the vertex.

Answers

7.1			
7.2	a)	i) ii)	 shift by u units in the positive x-direction
	b)	i) ii)	 shift by v units in the positive y-direction
	c)	i) ii)	 dilation by the factor a in the y direction with respect to the origin if a < 0: reflection with respect to the x-axis
	d)	i) ii)	 compression by the factor $1/a$ in the y direction with respect to the origin if a < 0: reflection with respect to the x-axis
7.3	a)	i) ii) iii) iv)	a = 1, u = -2, v = 0 V(-2 0) parabola opens upwards
	b)	i) ii) iii) iv)	a = -3, u = 0, v = 0 V(0 0) parabola opens downwards
	c)	i) ii) iii) iv)	a = 2, u = 0, v = -1 V(0 -1) parabola opens upwards
	d)	i) ii) iii) iv)	a = -1, u = 3, v = 4 V(3 4) parabola opens downwards
	e)	(see nex	ct page)

e) i) $a = \frac{1}{2}, u = -3, v = 2$

ii) V(-3|2)

- iii) parabola opens upwards
- iv) ...

f) i)
$$a = -2, u = 1, v = 5$$

- ii) V(1|5)
- iii) parabola opens downwards
- iv) ...

g)

- i) $a = -1, u = \frac{1}{2}, v = \frac{5}{2}$ ii) $V\left(\frac{1}{2}|\frac{5}{2}\right)$
- iii) parabola opens downwards
- iv) ...
- h) i) $a = -3, u = 2, v = -\frac{1}{2}$ ii) $V(2|-\frac{1}{2})$
 - iii) parabola opens downwardsiv) ...

7.4
$$y = f_0(x) = x^2$$

 $y = f_1(x) = 2(x-2)^2 - 4$

$$y = f_2(x) = -\frac{1}{2}(x+1)^2 + 6$$

Hints:

- The graph directly tells you the coordinates of the vertex.
- Consider a further point of the graph.

7.5 a)
$$y = f(x) = 2x^2 - 12x + 22$$

b)
$$y = f(x) = -x^2 - 4x - 7$$

c)
$$y = f(x) = x^2 + 5$$

Notice:

- This is both the general and the vertex form of the equation.

d)
$$y = f(x) = -3x^2 + 24x - 48$$

- 7.6 a) $y = f(x) = 3(x 2)^2 4$
 - b) $y = f(x) = (x + 3)^2 9$
 - c) $y = f(x) = (x 1)^2$
 - d) $y = f(x) = 2(x + 3)^2$

e)
$$y = f(x) = -2\left(x + \frac{3}{2}\right)^2 + \frac{5}{2}$$

f) $y = f(x) = x^2 + 1$

Notice:

- This is both the general and the vertex form of the equation.

g) $y = f(x) = -\frac{1}{2}(x-2)^2$

h)
$$y = f(x) = -4(x - 3)^2 - 7$$

i)
$$y = f(x) = 2\left(x + \frac{1}{2}\right)^2 - \frac{49}{2}$$

j) $y = f(x) = -\left(x - \frac{1}{4}\right)^2 + \frac{49}{16}$

7.7

a)

c)	i)	V(1 0)
	ii)	parabola opens upwards

e) i)
$$V\left(-\frac{3}{2}|\frac{5}{2}\right)$$

ii) parabola opens downwards

ii) parabola opens downwards i) i) $V(^{1+49})$

i) i)
$$V\left(-\frac{1}{2}\left|-\frac{15}{2}\right)\right)$$

ii) parabola opens upwards

b)	i)	V(-3 -9)
	ii)	parabola opens upwards
d)	i)	V(-3 0)
	ii)	parabola opens upwards
f)	i)	V(0 1)
	ii)	parabola opens upwards
h)	ii) i)	parabola opens upwards V(3 -7)
h)	,	
h) j)	i)	V(3 -7)

ii) parabola opens downwards

7.8	a)	4 th statement

b) 3rd statement

c) 1st statement