Exercises 7 Quadratic function and equations Ouadratic function

Objectives

- be able to graph a quadratic function out of the vertex form of its equation.
- be able to determine the position of the vertex of a parabola out of the vertex form of the equation of the corresponding quadratic function.
- be able to convert the vertex form of the equation of a quadratic function into the general form.
- know, understand, and be able to apply the method of completing the square.
- be able to convert the general form of the equation of a quadratic function into the vertex form.

Problems

7.1 Look at the easiest possible quadratic function:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

- a) Establish a table of values of f for the interval $-4 \le x \le 4$.
- b) Draw the graph of f in the interval $-4 \le x \le 4$ into a Cartesian coordinate system.
- 7.2 The equation of a general quadratic function can be written in the so-called vertex form below:

$$\begin{array}{ll} f \colon \ D \ \to \ \mathbb{R} \\ x \ \mapsto \ y = f(x) = a(x-u)^2 + v \end{array} \qquad \begin{array}{ll} (D \subseteq \mathbb{R}) \\ (a \in \mathbb{R} \backslash \{0\}, \, u \in \mathbb{R}, \, v \in \mathbb{R}) \end{array}$$

Investigate the influence of the three parameters \mathbf{a} , \mathbf{u} , and \mathbf{v} on the graph of the quadratic function by always varying only one parameter and keeping the other two parameters constant:

a) Parameter **u** (varying **u**, keeping a and v constant)

$$\begin{aligned} y &= f_0(x) = x^2 \\ y &= f_1(x) = (x-2)^2 \\ y &= f_2(x) = (x+1)^2 \end{aligned} \qquad \begin{aligned} &(a=1,\, \textbf{u}=\textbf{0},\, v=0) \\ &(a=1,\, \textbf{u}=\textbf{2},\, v=0) \\ &(a=1,\, \textbf{u}=\textbf{-1},\, v=0) \end{aligned}$$

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **u** on the graph of the quadratic function.
- b) Parameter v (varying v, keeping a and u constant)

$$\begin{array}{lll} y = f_0(x) = x^2 & (a = 1, u = 0, \mathbf{v} = \mathbf{0}) \\ y = f_1(x) = x^2 + 3 & (a = 1, u = 0, \mathbf{v} = \mathbf{3}) \\ y = f_2(x) = x^2 - 2 & (a = 1, u = 0, \mathbf{v} = -\mathbf{2}) \end{array}$$

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter v on the graph of the quadratic function.
- c) Parameter a (varying a, keeping u and v constant)

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **a** on the graph of the quadratic function.

d) Parameter a (varying a, keeping u and v constant)

$$\begin{split} y &= f_0(x) = x^2 \\ y &= f_1(x) = \frac{1}{2}x^2 \\ y &= f_2(x) = -\frac{1}{2}x^2 \end{split} \qquad \begin{aligned} & \left(\textbf{a} = \textbf{1}, \, u = 0, \, v = 0 \right) \\ & \left(\textbf{a} = \frac{\textbf{1}}{2}, \, u = 0, \, v = 0 \right) \\ & \left(\textbf{a} = -\frac{\textbf{1}}{2}, \, u = 0, \, v = 0 \right) \end{aligned}$$

- Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter \mathbf{a} on the graph of the quadratic function.
- For each quadratic function f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to h) ... 7.3
 - ... state the parameters a, u, and v. i)
 - ii) ... state the coordinates of the vertex of the graph.
 - iii) ... state whether the parabola, i.e. the graph of the function, opens upwards or downwards.
 - iv) ... graph the function.

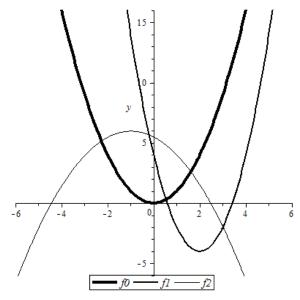
a)
$$y = f(x) = (x + 2)^2$$
 b) $y = f(x) = -3x^2$

c)
$$y = f(x) = 2x^2 - 1$$
 d) $y = f(x) = -(x - 3)^2 + 4$

e)
$$y = f(x) = \frac{1}{2}(x+3)^2 + 2$$
 f) $y = f(x) = -2(x-1)^2 + 5$

g)
$$y = f(x) = \frac{5}{2} - \left(x - \frac{1}{2}\right)^2$$
 h) $y = f(x) = -\frac{1}{2} - 3(2 - x)^2$

7.4 Look at the graphs of the quadratic functions f_0 , f_1 , and f_2 :



Determine the equations of the three functions, i.e. y = f(x) = ...

- 7.5 The equation of a quadratic function f is written in the vertex form. Determine the general form of the equation:
 - b) $y = f(x) = -(x+2)^2 3$ $y = f(x) = 2(x - 3)^2 + 4$
 - $y = f(x) = x^2 + 5$ d) $y = f(x) = -3(x - 4)^2$

7 (Convert the given	· · · · · · · · · · · · · · · · · · ·	1 4	C	41	. 1 1	. 41	
/ h	L onvert the given	edilation of a	กบลกหลบเล	กาทะหากท าทาก	the vertey torn	i nv comni	ering the sa	mare
7.0	Convert the given	equation of a	quadratic i	iunction into	the vertex form	i by compi	cuing the sq	uaic.

- a) $y = f(x) = 3x^2 12x + 8$
- b) $y = f(x) = x^2 + 6x$

c) $y = f(x) = x^2 - 2x + 1$

- d) $y = f(x) = 2x^2 + 12x + 18$
- e) $y = f(x) = -2x^2 6x 2$
- f) $y = f(x) = x^2 + 1$
- g) $y = f(x) = -\frac{1}{2}x^2 + 2x 2$
- h) $y = f(x) = -4x^2 + 24x 43$
- i) y = f(x) = 2(x-3)(x+4)
- j) $y = f(x) = x + 3 (x + \frac{1}{2})x$
- 7.7 For the graphs of the quadratic functions f in exercises 7.6 a) to j) ...
 - i) ... determine the coordinates of the vertex.
 - ii) ... state whether the parabola opens upwards or downwards.
- 7.8 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) The graph of a quadratic function ...
 - ... always intersects the x-axis in two points.
 - ... opens downwards if it has no point in common with the x-axis.
 - ... touches the x-axis if there is only one vertex.
 - ... is always a parabola.
 - b) f is a linear function, and g is a quadratic function. It can be concluded that the graphs of f and g ...
 - ... have no points in common.
 - ... intersect only if the slope of f is not equal to zero.
 - ... cannot have more than two points in common.
 - ... have at least one point in common.
 - c) The vertex form of the equation of a quadratic function ...
 - ... is identical with the general form if the vertex of the graph is on the y-axis.
 - ... can be obtained from the general form by multiplying out all the terms.
 - ... does not exist if the graph opens downwards.
 - ... only depends on the position of the vertex.