
Exercises 13 Derivative Derivative (rate of change), derivative (derived function) of constant/power/exponential functions

Objectives

- be able to estimate a derivative (rate of change) out of the graph of a function.
- be able to state the derivative (rate of change) of a constant and a linear function.
- be able to determine the derivative (derived function) of a constant and a linear function.
- be able to determine the derivative (derived function) of a basic power and a basic exponential function.
- be able to determine a derivative (rate of change) of a basic power and a basic exponential function.

Problems

13.1 The graph of a function f ist given as follows:

Estimate the derivative (rate of change) $f'(x_0)$ at the given position x_0 :

a)
$$x_0 = -1$$
 b) $x_0 = 0$

c)
$$x_0 = 1$$
 d) $x_0 = -2$

Hints:

- Draw the tangent to the graph of f at the given position $x_{0}. \label{eq:constraint}$
- Choose any two points on the tangent, and estimate their coordinates.
- Determine the slope of the tangent out of the estimated coordinates of the two points.

13.2 For each of the following functions f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x) = ...$

- i) ... draw the graph of f.
- ii) ... state the derivative (rate of change) $f'(x_0)$ at the given position x_0 .
- a) f(x) = 3 $x_0 = 2$
- b) $f(x) = c \ (c \in \mathbb{R})$ any $x_0 \in \mathbb{R}$
- c) f(x) = 2x 3 $x_0 = 4$
- d) $f(x) = mx + q \ (m \in \mathbb{R} \setminus \{0\}, q \in \mathbb{R})$ any $x_0 \in \mathbb{R}$

Hint:

- If the graph of a function f is a straight line, the derivative (rate of change) $f'(x_0)$ is the slope of that straight line, i.e $f'(x_0)$ has the same value at each position x_0 , and therefore does not depend on x_0 .

13.3 Determine f'(x):

a)	f(x) = 3	b)	$\mathbf{f}(\mathbf{x}) = 0$	c)	f(x) = -1
d)	$f(x) = x^3$	e)	$f(x) = x^4$	f)	$f(x) = x^5$
g)	$f(x) = x^{17}$	h)	$f(x) = x^{200}$	i)	$f(x) = x^{100'001}$
j)	$f(x) = x^{-1}$	k)	$f(x) = x^{-2}$	l)	$f(x) = x^{-17}$
m)	$f(x) = \frac{1}{x}$	n)	$f(x) = \frac{1}{x^3}$	o)	$f(x) = \frac{1}{x^{99}}$
p)	$f(x) = 3^x$	q)	$f(x) = 5^x$	r)	$f(x) = \left(\frac{2}{3}\right)^x$

13.4 Determine the derivative (rate of change) $f'(x_0)$ of the function f at the indicated position x_0 :

a)	f(x) = x				
	i) $x_0 = 0$	ii)	$x_0 = 1$	iii)	$x_0 = -2$
b)	$f(x) = x^5$				
	i) $x_0 = 0$	ii)	$x_0 = 2$	iii)	$\mathbf{x}_0 = -\frac{2}{3}$
c)	$f(x) = x^{-4}$				
	i) $x_0 = -1$	ii)	$\mathbf{x}_0 = -\frac{4}{3}$	iii)	$x_0 = 0$
d)	$f(x) = \left(\frac{2}{3}\right)^x$				
	i) $x_0 = 0$	ii)	$x_0 = 1$	iii)	$x_0 = -2$

13.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

- a) The derivative (rate of change) of a function f at the position x_0 is a ...
 - ... real number.

 ... function.

 ... tangent.

 ... graph.
- b) (see next page)

- b) The derivative (derived function) f' of a function f is a ...
 - ... real number.
 ... function.
 ... tangent.
 ... graph.
- c) $f'(x_0)$ is the slope of the ...
 - ... secant through the points (0|0) and $(x_0|f(x_0))$.
 - ... secant through the points $(x_0+\Delta x|f(x_0+\Delta x))$ and $(x_0|f(x_0))$.
 - ... tangent to the graph of f through $(x_0|f(x_0))$.
 - ... tangent to the graph of f ' through $(x_0|f(x_0))$.