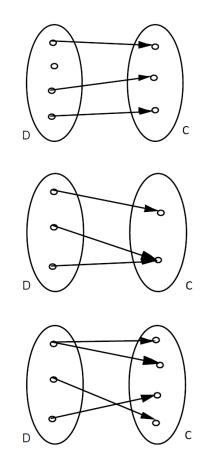
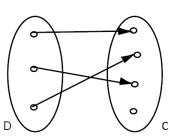
Exercises 2 Function Domain, codomain, range, graph

Objectives


- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

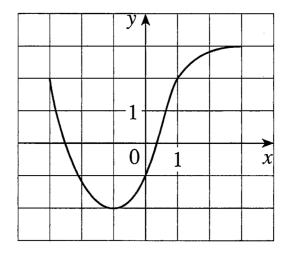
Problems


- 2.1 Which of the following relations are functions? Explain your answer.
 - a)

b)

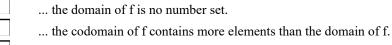
c)

d)


 e) D = set of all courses in the FHGR Tourism bachelor programme C = set of all FHGR lecturers
 f: D → C, c ↦ l = f(c) = lecturer of course c 2.2

2.3

2.4


f)	$D = \{1993, 1994, \dots, 2002, 2003\}$ C = set of all human beings aged between 20 and 30 f: D \rightarrow C, y \mapsto p = f(y) = person who was born in the year y					
g)	D = set of all human beings aged between 20 and 30 C = {1993, 1994,, 2002, 2003} f: D \rightarrow C, p \mapsto y = f(p) = year of birth of person p					
h)	f: $\mathbb{R} \to \mathbb{R}, x \mapsto y = f(x) = x^2$					
i)	f: $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto y = f(x) =$ number whose square is x					
	Notice: - \mathbb{R}^+ is the set of all positive real numbers, i.e. $\mathbb{R}^+ = \{x: x \in \mathbb{R} \text{ and } x > 0\}.$					
j)	f: $\mathbb{R} \to \mathbb{R}$, t \mapsto b = f(t) = bank account balance at time t					
Datas		non a Dafila	£	-1		
		range R of the				
a)	$D = \{January, February, March,, December\}$ $C = \{A, B, C,, Z\}$ f: $D \rightarrow C$, $m \mapsto l = f(m) = initial letter of month m$					
b)	 D = set of all neighbouring countries of Switzerland C = set of all European cities c: D → C, x ↦ y = c(x) = capital of neighbouring country x 					
c)	function f in problem 2.1 g)					
d)	function f in problem 2.1 h)					
a)	f: $\mathbb{R} \to \mathbb{R}, x \mapsto f(x) = x^3 - x$					
	Determine the following values:					
	i)	f(1)	ii)	f(-2)	iii)	f(a)
	iv)	$f(b^2)$	v)	f(a - b)	vi)	$f(x^3 - x)$
b)	g: $\mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \mapsto g(x) = \frac{x^2}{x+1}$					
	Determine the following values:					
	i)	g(2)	ii)	g(-3)	iii)	g(a)
	iv)	g(b ²)	v)	g(a - b)	vi)	$g\left(\frac{x^2}{x+1}\right)$
(see n	next page)				

2.4 The graph of a function f ist given as follows:

- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range R of f.
- 2.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
 - a) The range of the function f: $\{x: x \in \mathbb{R} \text{ and } x \ge 4\} \to \mathbb{R}, x \mapsto y = f(x) = \sqrt{x 4}, \text{ is the set } ...$

b) f cannot be a function if ...

... the domain of f contains more elements than the codomain of f.

- ... at least one element of the domain of f has more than one image.
- c) If the range of a function contains as many elements as the domain, it can be concluded that ...
 - ... the range is the same set as the domain.
 - ... the codomain contains as many elements as the domain.
 - ... each element of the codomain is also an element of the range.
 - ... no element of the range is associated to more than one element of the domain.