Exercises 6 Quadratic function and equations Quadratic function

Objectives

- be able to graph a quadratic function out of the vertex form of its equation.
- be able to determine the position of the vertex of a parabola out of the vertex form of the equation of the corresponding quadratic function.
- be able to convert the vertex form of the equation of a quadratic function into the general form.
- know, understand, and be able to apply the method of completing the square.
- be able to convert the general form of the equation of a quadratic function into the vertex form.

Problems

6.1 Look at the easiest possible quadratic function:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

- a) Establish a table of values of f for the interval $-4 \le x \le 4$.
- b) Draw the graph of f in the interval $-4 \le x \le 4$ into a Cartesian coordinate system.
- 6.2 The equation of a general quadratic function can be written in the so-called vertex form below:

$$\begin{array}{ll} f\colon\thinspace D\,\to\,\mathbb{R} & (D\subseteq\mathbb{R}) \\ x\,\mapsto\,\,y=f(x)=a(x\,\text{-}\,u)^2+v & (a\in\mathbb{R}\backslash\{0\},\,u\in\mathbb{R},\,v\in\mathbb{R}) \end{array}$$

Investigate the influence of the three parameters a, u, and v on the graph of a quadratic function.

Procedure:

- In each part a) to d), three quadratic functions f_0 , f_1 , and f_2 are given.
- In the three functions, one of the parameters is varied while the other two parameters are kept constant.
- The influence of the particular parameter can be described by comparing the graphs of the three functions.
- a) Parameter **u** (**u is varied**, a and v are kept constant)

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **u** by comparing the three graphs.
- b) Parameter v (v is varied, a and u are kept constant)

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter v by comparing the three graphs.
- c) (see next page)

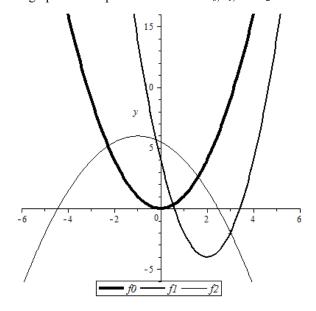
c) Parameter a (a is varied, u and v are kept constant)

$$\begin{array}{ll} y = f_0(x) = x^2 & \quad (\textbf{a} = \textbf{1}, \, u = 0, \, v = 0) \\ y = f_1(x) = 2x^2 & \quad (\textbf{a} = \textbf{2}, \, u = 0, \, v = 0) \\ y = f_2(x) = -2x^2 & \quad (\textbf{a} = \textbf{-2}, \, u = 0, \, v = 0) \end{array}$$

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **a** by comparing the three graphs.
- d) Parameter a (a is varied, u and v are kept constant)

$$\begin{split} y &= f_0(x) = x^2 \\ y &= f_1(x) = \frac{1}{2}x^2 \\ y &= f_2(x) = -\frac{1}{2}x^2 \end{split} \qquad \begin{aligned} & \left(\textbf{a} = \textbf{1}, \, u = 0, \, v = 0 \right) \\ & \left(\textbf{a} = \frac{\textbf{1}}{2}, \, u = 0, \, v = 0 \right) \\ & \left(\textbf{a} = -\frac{\textbf{1}}{2}, \, u = 0, \, v = 0 \right) \end{aligned}$$

- i) Sketch the graphs of the functions f_0 , f_1 , and f_2 into one coordinate system.
- ii) Describe the influence of the parameter **a** by comparing the three graphs.
- 6.3 For each quadratic function f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$ in a) to h) ...
 - i) ... state the parameters a, u, and v.
 - ii) ... state the coordinates of the vertex of the graph.
 - iii) ... state whether the parabola, i.e. the graph of the function, opens upwards or downwards.
 - iv) ... graph the function.


a)
$$y = f(x) = (x + 2)^2$$
 b) $y = f(x) = -3x^2$

c)
$$y = f(x) = 2x^2 - 1$$
 d) $y = f(x) = -(x - 3)^2 + 4$

e)
$$y = f(x) = \frac{1}{2}(x+3)^2 + 2$$
 f) $y = f(x) = -2(x-1)^2 + 5$

g)
$$y = f(x) = \frac{5}{2} - \left(x - \frac{1}{2}\right)^2$$
 h) $y = f(x) = -\frac{1}{2} - 3(2 - x)^2$

6.4 Look at the graphs of the quadratic functions f_0 , f_1 , and f_2 :

Determine the equations of the three functions, i.e. y = f(x) = ...

6.5	The equation of a quadratic function f is written in the vertex form. Determine the general form of the equation:				
	a)	$y = f(x) = 2(x - 3)^2 + 4$	b)	$y = f(x) = -(x + 2)^2 - 3$	
	c)	$y = f(x) = x^2 + 5$	d)	$y = f(x) = -3(x - 4)^2$	
6.6	Convert the given equation of a quadratic function into the vertex form by completing the square:				
	a)	$y = f(x) = 3x^2 - 12x + 8$	b)	$y = f(x) = x^2 + 6x$	
	c)	$y = f(x) = x^2 - 2x + 1$	d)	$y = f(x) = 2x^2 + 12x + 18$	
	e)	$y = f(x) = -2x^2 - 6x - 2$	f)	$y = f(x) = x^2 + 1$	
	g)	$y = f(x) = -\frac{1}{2}x^2 + 2x - 2$	h)	$y = f(x) = -4x^2 + 24x - 43$	
	i)	y = f(x) = 2(x - 3)(x + 4)	j)	$y = f(x) = x + 3 - (x + \frac{1}{2})x$	
6.8	 i) determine the coordinates of the vertex. ii) state whether the parabola opens upwards or downwards. Decide which statements are true or false. Put a mark into the corresponding box.				
		In each problem a) to c), exactly one statement is true.			
	a)	opens downwards if it has	always intersects the x-axis in two points opens downwards if it has no point in common with the x-axis touches the x-axis if there is only one vertex.		
	b) f is a linear function, and g is a quadratic function. It can be concluded that the graphs of f and g				
		have no points in common intersect only if the slope of f is not equal to zero cannot have more than two points in common have at least one point in common.			
	c)	The vertex form of the equation of a quadratic function			
		is identical with the general form if the vertex of the graph is on the y-axis can be obtained from the general form by multiplying out all the terms.			

... does not exist if the graph opens downwards. ... only depends on the position of the vertex.