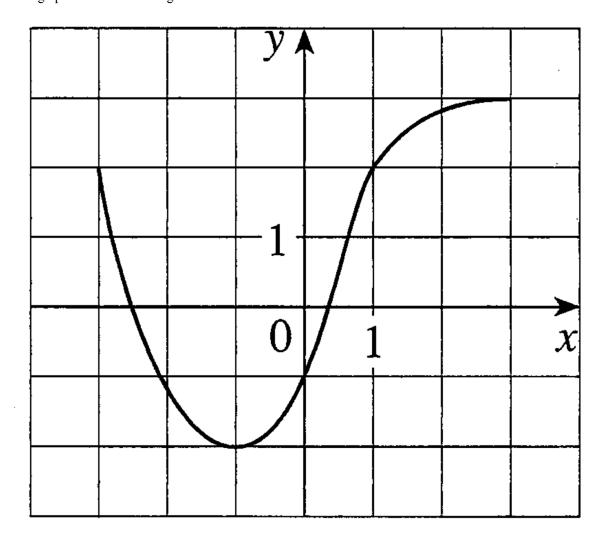
Exercises 11 Derivative


Derivative (rate of change), derivative (derived function) of constant/power/exponential functions

Objectives

- be able to estimate a derivative (rate of change) out of the graph of a function.
- be able to state the derivative (rate of change) of a constant and a linear function.
- be able to determine the derivative (derived function) of a constant and a linear function.
- be able to determine the derivative (derived function) of a basic power and a basic exponential function.
- be able to determine a derivative (rate of change) of a basic power and a basic exponential function.

Problems

11.1 The graph of a function f ist given as follows:

Estimate the derivative (rate of change) $f'(x_0)$ at the given position x_0 :

- a) $x_0 = -1$
- b) $x_0 =$
- c) $x_0 = 1$
- d) $x_0 = -2$

Hints:

- Draw the tangent to the graph of f at the given position x_0 .
- Choose any two points on the tangent, and estimate their coordinates.
- Determine the slope of the tangent out of the estimated coordinates of the two points.

11.2 For each of the following functions $f: \mathbb{R} \to \mathbb{R}, x \mapsto y = f(x) = ...$

- i) ... draw the graph of f.
- ii) ... state the derivative (rate of change) $f'(x_0)$ at the given position x_0 .
- a) f(x) = 3

$$x_0 = 2$$

b) $f(x) = c \ (c \in \mathbb{R})$

any $x_0 \in \mathbb{R}$

c) f(x) = 2x - 3

 $x_0 = 4$

d) f(x) = mx +

 $\mathbf{x}_0 - \mathbf{4}$

Hint:

 $f(x) = mx + q \ (m \in \mathbb{R} \setminus \{0\}, q \in \mathbb{R}) \quad \text{any } x_0 \in \mathbb{R}$

- If the graph of a function f is a straight line, the derivative (rate of change) $f'(x_0)$ is the slope of that straight line, i.e $f'(x_0)$ has the same value at each position x_0 , and therefore does not depend on x_0 .

11.3 Determine f'(x):

- a) f(x) = 3
- b) f(x) = 0
- c) f(x) = -1

- $d) f(x) = x^3$
- e) $f(x) = x^4$
- $f(x) = x^5$

- g) $f(x) = x^{17}$
- $f(x) = x^{200}$
- i) $f(x) = x^{100'001}$

- $j) f(x) = x^{-1}$
- k) $f(x) = x^{-2}$
- 1) $f(x) = x^{-17}$

- m) $f(x) = \frac{1}{x}$
- $f(x) = \frac{1}{x^3}$
- o) $f(x) = \frac{1}{x^{99}}$

- $p) f(x) = 3^x$
- $q) f(x) = 5^x$
- r) $f(x) = \left(\frac{2}{3}\right)^x$

Determine the derivative (rate of change) $f'(x_0)$ of the function f at the indicated position x_0 :

- a) f(x) = x
 - i) $x_0 = 0$
- ii) $x_0 = 1$
- iii) $x_0 = -2$

- $b) f(x) = x^5$
 - i) $x_0 = 0$
- ii) $x_0 = 2$
- iii) $x_0 = -\frac{2}{3}$

- c) $f(x) = x^{-4}$
 - i) $x_0 = -1$
- ii) $x_0 = -\frac{4}{3}$
- iii) $x_0 = 0$

- d) $f(x) = \left(\frac{2}{3}\right)^x$
 - i) $x_0 = 0$
- ii) $x_0 =$

iii) $x_0 = -2$

Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a) The derivative (rate of change) of a function f at the position x_0 is a ...

... real number.
... function.
... tangent.
... graph.

b) (see next page)

b)	The derivative (derived function) f' of a function f is a	
		real number.
		function.
		tangent.
		graph.
c)	$f'(x_0)$ is the slope of the	
		secant through the points $(0 0)$ and $(x_0 f(x_0))$.
		secant through the points $(x_0+\Delta x f(x_0+\Delta x))$ and $(x_0 f(x_0))$.
		tangent to the graph of f through $(x_0 f(x_0))$.
		tangent to the graph of f ' through $(x_0 f(x_0)).$

Answers

11.1 a) $f'(-1) \approx 0$

b)
$$f'(0) \approx 2$$

c)
$$f'(1) \approx \frac{3}{2}$$

d)
$$f'(-2) \approx -\frac{5}{3}$$

11.2 a) i) ...

ii)
$$f'(2) = 0$$

b) i) ...

ii) $f'(x_0) = 0$ at any position x_0

c) i) ...

ii) f'(4) = 2

d) i) ...

ii) $f'(x_0) = m$ at any postion x_0

11.3 a) f'(x) = 0

f'(x) = 0

c) f'(x) = 0

d) $f'(x) = 3x^2$

e) $f'(x) = 4x^3$

f) $f'(x) = 5x^4$

g) $f'(x) = 17x^{16}$

h) $f'(x) = 200x^{199}$

i) $f'(x) = 100'001x^{100'000}$

j) $f'(x) = -x^{-2}$

k) $f'(x) = -2x^{-3}$

1) $f'(x) = -17x^{-18}$

m) $f'(x) = -\frac{1}{x^2}$

n) $f'(x) = -\frac{3}{x^4}$

o) $f'(x) = -\frac{99}{x^{100}}$

p) $f'(x) = 3^x \ln(3)$

q) $f'(x) = 5^x \ln(5)$

r) $f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$

11.4 a) f'(x) = 1

i) f'(0) = 1

ii) f'(1) = 1

iii) f'(-2) = 1

b) $f'(x) = 5x^4$

i) f'(0) = 0

ii) f'(2) = 80

iii) $f'(-\frac{2}{3}) = \frac{80}{81}$

c) $f'(x) = -\frac{4}{x^5}$

i) f'(-1) = 4

ii) $f'(-\frac{4}{3}) = \frac{243}{256}$

iii) f'(0) is not defined (division by zero)

d) $f'(x) = \left(\frac{2}{3}\right)^x \ln\left(\frac{2}{3}\right)$

i) $f'(0) = \ln\left(\frac{2}{3}\right)$

ii) $f'(1) = \frac{2}{3} \ln(\frac{2}{3})$

iii) $f'(-2) = \frac{9}{4} \ln(\frac{2}{3})$

11.5 a) 1st statement

b) 2nd statement

c) 3rd statement