Increasing/decreasing, concavity

Ex.: $f(x) = x^3 - 7x - 6$

Increasing/decreasing

If the first derivative of a function f is positive at $x = x_0$, i.e. $f'(x_0) > 0$, f is increasing at $x = x_0$.

If the first derivative of a function f is negative at $x = x_0$, i.e. $f'(x_0) < 0$, f is decreasing at $x = x_0$.

Note: The reverse is also true:

If a function f is increasing at $x = x_0$, the first derivative of f at $x = x_0$ is positive, i.e. $f'(x_0) > 0$.

If a function f is decreasing at $x = x_0$, the first derivative of f at $x = x_0$ is negative, i.e. $f'(x_0) < 0$.

Concavity

If the second derivative of a function f is positive at $x = x_0$, i.e. $f''(x_0) > 0$, the graph of f is concave up ("left-hand bend") at $x = x_0$.

If the second derivative of a function f is negative at $x = x_0$, i.e. f " $(x_0) < 0$, the graph of f is concave down ("right-hand bend") at $x = x_0$.

Note: Here, the reverse is **not** true:

If the graph of a function f is concave up at $x = x_0$ ("left-hand bend"), the second derivative of f is **either** positive **or** equal to zero, i.e. either $f''(x_0) > 0$ or $f''(x_0) = 0$.

If the graph of a function f is concave down at $x = x_0$ ("right-hand bend"), the second derivative of f is **either** negative **or** equal to zero, i.e. either f "(x_0) < 0 or f "(x_0) = 0.

Local maxima/minima

A function f has a **local maximum** at $x = x_0$ if the tangent to the graph of f at $x = x_0$ is horizontal and if the graph of f is concave down ("right-hand bend") at $x = x_0$.

This applies if $f'(x_0) = 0$ (necessary) and $f''(x_0) < 0$ (sufficient).

A function f has a **local minimum** at $x = x_0$ if the tangent to the graph of f at $x = x_0$ is horizontal and if the graph of f is concave up ("left-hand bend") at $x = x_0$.

This applies if $f'(x_0) = 0$ (necessary) and $f''(x_0) > 0$ (sufficient).

Global maximum/minimum

The **global maximum/minimum** of a continuous function f is either a local maximum/minimum of f or the value of f at one of the endpoints of the domain.

Points of inflection

A function f has a **point of inflection** at $x = x_0$ if the graph of f changes its concavity from concave up to concave down (or vice versa) at $x = x_0$.

This applies if $f''(x_0) = 0$ (necessary) and $f'''(x_0) \neq 0$ (sufficient).

Ex.: (see next page)

Ex.:
$$f(x) = x^3 - 7x - 6$$
 (see page 1)
 $\Rightarrow f'(x) = 3x^2 - 7$
 $\Rightarrow f''(x) = 6x$
 $\Rightarrow f'''(x) = 6$

Local maxima/minima

$$f'(x) = 0 \text{ at } x_1 = \sqrt{\frac{7}{3}} = 1.52... \text{ and } x_2 = -\sqrt{\frac{7}{3}} = -1.52...$$

$$f''(x_1) = 6 \cdot \sqrt{\frac{7}{3}} = 9.16... > 0 \qquad \Rightarrow \text{ local minimum at } x_1 = \sqrt{\frac{7}{3}}$$

$$f''(x_2) = -6 \cdot \sqrt{\frac{7}{3}} = -9.16... < 0 \qquad \Rightarrow \text{ local maximum at } x_2 = -\sqrt{\frac{7}{3}}$$

Global maximum/minimum

Ex.:
$$D = \{x: x \in \mathbb{R} \text{ and } 0 \le x \le 4\}$$
 \Rightarrow global maximum at $x = 4$ (endpoint of domain)
 \Rightarrow global minimum at $x = x_1 = \sqrt{\frac{7}{3}}$ (local minimum)
Ex.: $D = \{x: x \in \mathbb{R} \text{ and } -4 \le x \le 3\}$ \Rightarrow global maximum at $x = x_2 = -\sqrt{\frac{7}{3}}$ (local maximum)
 \Rightarrow global minimum at $x = -4$ (endpoint of domain)

Points of inflection

$$f''(x) = 0 \text{ at } x_3 = 0$$

$$f'''(x_3) = 6 \neq 0 \qquad \Rightarrow \text{ point of inflection at } x_3 = 0$$

Financial mathematics

Marginal cost / Marginal revenue / Marginal profit function

= first derivative of the cost/revenue/profit function

Ex.:	Cost function ⇒ Marginal cost function	$C(x) = (2x^2 + 120) CHF$ C'(x) = 4x CHF	
	Revenue function ⇒ Marginal revenue function	$R(x) = (-x^2 + 168x) \text{ CHF}$ R'(x) = (-2x + 168) CHF	
	Profit function ⇒ Marginal profit function	$P(x) = R(x) - C(x) = (-3x^2 + 168x - 120) CHF$ P'(x) = (-6x + 168) CHF	

Average cost / Average revenue / Average profit function

Average cost function / Unit cost function		$\overline{C}(x) := \frac{C(x)}{x}$	where $C(x) = cost$ function
Ex.:	Cost function ⇒ Average cost function	$C(x) = (3x2 + 4x)$ $\overline{C}(x) = (3x + 4 + 4)$	(+2) CHF $(\frac{2}{x})$ CHF
Average	e revenue function	$\overline{R}(x) := \frac{R(x)}{x}$	where $R(x)$ = revenue function
Average profit function		$\overline{P}(x) := \frac{P(x)}{x}$	where $P(x) = profit$ function