Aufgaben 13 Thermodynamik Entropie, Entropietransport, -erzeugung, -bilanz, Temperatur

Lernziele

- die Entropie als mengenartige Grundgrösse der Thermodynamik verstehen.
- wissen, dass Entropie in einem Körper gespeichert werden kann.
- wissen, dass Entropie in einen Körper hinein oder aus ihm heraus fliessen kann.
- wissen und verstehen, wie eine Wärmepumpe grundsätzlich funktioniert.
- wissen, dass Entropie erzeugt, jedoch nicht vernichtet werden kann.
- wissen und verstehen, dass sich unumkehrbare Vorgänge dadurch auszeichnen, dass dabei Entropie erzeugt wird.
- die Entropiebilanz anwenden können.
- den Unterschied zwischen den Grössen Entropie und Temperatur verstehen.
- eine Temperaturdifferenz als Antrieb eines Entropiestromes verstehen.
- wissen und verstehen, dass es einen absoluten Temperaturnullpunkt gibt.
- den Zusammenhang zwischen der absoluten Temperaturskala, der Celsius-Temperaturskala und der Fahrnheit-Temperaturskala kennen und verstehen.
- sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
- einen neuen Sachverhalt analysieren und beurteilen können.
- eine neue Problemstellung selbstständig bearbeiten können.

Aufgaben

13.1 Vorgängiges Selbststudium

- a) Studieren Sie im Buch KPK 2 die folgenden Abschnitte:
 - Einleitung zum Kapitel "1. Wärmelehre" (Seite 5)
 - 1.1 Entropie und Temperatur (Seiten 5 und 6)
 - 1.2 Der Temperaturunterschied als Antrieb für einen Entropiestrom (Seiten 7 und 8)
 - 1.3 Die Wärmepumpe (Seiten 8 und 9)
 - 1.4 Die absolute Temperatur (Seiten 9 und 10)
 - 1.5 Entropieerzeugung (Seite 10 bis 13, ohne Aufgaben)
 - 1.6 Die Entropiestromstärke (Seite 13)

Bemerkung zu 1.1:

- Die Definition der sogenannten "Normaltemperatur" ist in der Literatur nicht einheitlich: Im Buch KPK 2 werden 25 °C als Normaltemperatur festgelegt. Häufig wird jedoch auch 0 °C als Normaltemperatur definiert.
- b) Führen Sie in Moodle den <u>Test 13.1</u> durch.

13.2 Beantworten Sie die folgenden Fragen:

- Wie ändern sich die im System gespeicherte Entropie und die Temperatur des Systems bei den folgenden Prozessen?
 - i) Schmelzen von Eis
 - ii) Kondensieren von Wasserdampf
 - iii) Heizen eines Steins
- b) Wie ändern sich die in einer Menge Wasser gespeicherte Entropie und die Temperatur des Wassers, wenn man die Wassermenge in zwei Teile trennt?
- c) Welche Bedeutung hat eine Temperaturdifferenz bei thermischen Prozessen?
- d) Wenn aus einem Körper 10 Ct Entropie fliessen, heisst das dann, dass sich die im Körper gespeicherte Entropie um 10 Ct verringert hat?

13.3 (siehe nächste Seite)

Aus dem Innenraum eines Hauses fliesst ständig Entropie über die Wände ab. Die über eine Beobachtungszeit von 1 h (= 3600 s) gemittelte Stärke des entsprechenden Entropiestromes beträgt 10.0 Ct/s.

Bestimmen Sie, um wieviel sich die im Innenraum des Hauses gespeicherte Entropie in der betrachteten Zeitspanne verändert hat.

In einem Behälter wird mit einem Tauchsieder Wasser erwärmt. Die Entropieerzeugungsrate beträgt $\Pi_S = 1.30 \text{ Ct/s}$. Wegen Wärmeverlusten fliesst über die Behälterwand Entropie ab. Die entsprechende Entropiestromstärke I_S steigt während 100 s linear von 0.100 Ct/s auf 0.400 Ct/s.

Bestimmen Sie die Änderungsrate S der im System Tauchsieder-Wasser gespeicherten Entropie als Funktion der Zeit t.

Hinweis:

- Stellen Sie die Entropiebilanz für das System Tauchsieder-Wasser auf.
- 13.5 In einem beheizten Raum befindet sich ein Heizkörper (z.B. ein Ofen), in welchem mit der Rate Π_S Entropie erzeugt wird. Die erzeugte Entropie wird an die Raumluft abgegeben. Andererseits fliesst über den Boden, die Decke und die Wände (inkl. Türen und Fenster) Entropie mit der Gesamtstromstärke I_S aus dem Raum ab.
 - a) Erstellen Sie mit Insight Maker ein systemdynamisches Modell für den beheizten Raum.

Das Modell soll die folgenden Grössen enthalten:

- in der Raumluft gespeicherte Entropie S (als Behälter)
- Entropieerzeugungsrate Π_S
- Entropiestromstärke I_S
- absolute Temperatur T der Raumluft

Hinweise

- Die in einem Körper (fest/flüssig/gasförmig) gespeicherte Entropie S und die absolute Temperatur T des Körpers hängen wie folgt zusammen:

```
S = k \cdot m \cdot T

wobei: S = Entropie, [S] = Ct

T = absolute Temperatur, [T] = K

m = Masse (hier: Masse der Raumluft), [m] = kg

k = spezifische Entropiekapazität des Materials (hier: von Luft), <math>[k] = Ct/(kg \cdot K)
```

- Die spezifische Entropiekapazität k gibt an, welche Menge Entropie einem Körper der Masse 1 kg zugeführt werden muss, um ihn um 1 K zu erwärmen.
- Die spezifische Entropiekapazität k hängt im Allgemeinen selbst von der Temperatur T ab. Hier nehmen wir aber vereinfachend an, dass k eine Konstante ist.
- b) Simulieren Sie den zeitlichen Verlauf der Entropie S und der Temperatur T. Stellen Sie die beiden Grössen je in einem Diagramm dar.

Hinweise

- Die spezifische Entropiekapazität von Luft beträgt k = 2.46 Ct/(kg·K)
- Nehmen Sie einen vernünftigen Wert für man.
- Nehmen Sie einen vernünftigen Anfangswert für T an.
- Berechnen Sie aus m und dem Anfangswert für T den Anfangswert für S.