
Gleichförmige Kreisbewegung

Grösse	Definition	SI-Einheit
Ort(svektor) r	(siehe Grafik)	
Geschwindigkeit(svektor) \vec{v}	$ec{ extbf{v}} := \dot{ec{ extbf{r}}}$	
Radius r	$r := \vec{r} $	[r] = m
Winkel φ	(siehe Grafik)	$[\phi]$ = rad (Radiant, Bogenmass), Pseudoeinheit
Umlaufdauer, Periode T	Zeitspanne für 1 Umlauf	[T] = s
Frequenz f	$f := \frac{1}{T}$	$[f] = \frac{1}{s} =: Hz (Hertz)$
Winkelgeschwindigkeit ω	$\omega := \frac{\Delta \varphi}{\Delta t}$	$[\omega] = \frac{1}{s}$
Bahngeschwindigkeit v	$\mathbf{v} := \vec{\mathbf{v}} \mathbf{bzw}. \mathbf{v} := \frac{\Delta \mathbf{s}}{\Delta \mathbf{t}}$	$[\mathbf{v}] = \frac{\mathbf{m}}{\mathbf{s}}$