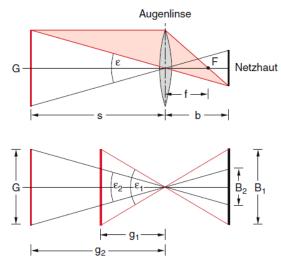
Aufgaben 12 Optische Instrumente Sehwinkel, Winkelvergrösserung, Lupe

Lernziele

- sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
- einen bekannten oder neuen Sachverhalt analysieren und beurteilen können.
- aus einem Experiment neue Erkenntnisse gewinnen können.
- eine neue Problemstellung selbstständig bearbeiten und in einer Gruppe diskutieren können.
- wissen und verstehen, was ein Sehwinkel ist.
- den grundlegenden Zweck eines optischen Instrumentes kennen und verstehen.
- wissen und verstehen, was die Winkelvergrösserung eines optischen Instrumentes ist.
- den Zusammenhang zwischen der Winkelvergrösserung eines optischen Instrumentes und der Grösse des reellen Bildes eines Gegenstandes auf der Augennetzhaut.
- die Funktionsweise einer Lupe kennen und verstehen.
- die Winkelvergrösserung einer Lupe bestimmen können.


Aufgaben

Sehwinkel, Winkelvergrösserung

12.1 Studieren Sie die folgenden Ausschnitte aus den Kapiteln "Das Auge" und "Vergrössernde optische Instrumente" aus dem Lehrbuch Demtröder (Demtröder, Experimentalphysik 2, Seiten 277 bis 286, ISBN 978-3-642-29943-8):

Je näher man einen Gegenstand an das Auge heranbringt, desto größer erscheint er uns, d. h. desto größer wird der Winkel ε zwischen den Lichtstrahlen von den Randpunkten des Gegenstandes (Abb. 11.6).

(...)

Abbildung 11.6 Zur Definition des Sehwinkels ε

(...)

Die Aufgabe vergrößernder optischer Instrumente ist es, den Sehwinkel ε zu vergrößern, ohne die deutliche Sehweite s_0 für das Auge zu unterschreiten. Als *Winkelvergrößerung V* des Instruments wird der Quotient

$$V = \frac{\text{Sehwinkel } \varepsilon \text{ mit Instrument}}{\text{Sehwinkel } \varepsilon_0 \text{ ohne Instrument}}$$

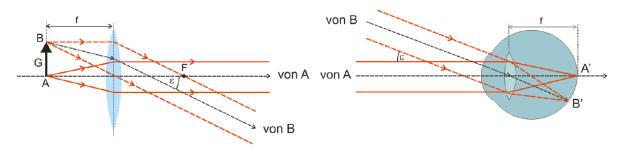
definiert.

Vergrößernde Instrumente erlauben deshalb, feinere Details eines Gegenstandes noch zu erkennen, die ohne das Instrument für das Auge nicht auflösbar wären, wenn ihr Sehwinkel ε_0 bei der deutlichen Sehweite s_0 kleiner als 1' ist.

Man beachte: Die Winkelvergrößerung $\varepsilon/\varepsilon_0$ ist im Allgemeinen nicht dasselbe wie der Abbildungsmaßstab B/G, der definiert ist als Verhältnis von Bildgröße B zu Gegenstandsgröße G.

- 12.2 Ein Gegenstand wird dann vom Auge scharf gesehen, wenn ein reelles Bild des Gegenstandes auf der Netzhaut entsteht. Die Bildgrösse B dieses reellen Bildes auf der Netzhaut hängt vom Sehwinkel ε ab.
 - a) Zeigen Sie mit Hilfe der Abbildung 11.6 in der Aufgabe 12.1, dass gilt:

$$B \sim \tan\left(\frac{\varepsilon}{2}\right)$$


bzw. für kleine ε:

b) Zeigen Sie, dass die Winkelvergrösserung V eines optischen Instrumentes ausdrückt, um welchen Faktor das reelle Bild auf der Netzhaut grösser ist, wenn der Gegenstand durch das optische Instrument hindurch betrachtet wird statt von blossem Auge.

Lupe

12.3 Studieren Sie den folgenden Text zur Funktionsweise einer Lupe:

Die Lupe ist eine Sammellinse kurzer Brennweite und dient zum Betrachten kleiner Objekte. Die Lupe wird in der Regel so zwischen Auge und Gegenstand gehalten, dass der Gegenstand in der Brennebene der Linse liegt. Dadurch erzeugt die Lupe ein unendlich weit entferntes virtuelles Bild des Gegenstandes. Es gelangen also parallele Lichtstrahlen ins Auge, und der Gegenstand erscheint dem Auge im Unendlichen zu liegen, d.h. das Auge kann sich auf unendliche Entfernung einstellen, sodass es dabei völlig entspannt ist:

a) Strahlengang der Lupe

b) Wirkung der Augenoptik

Die Vergrösserungswirkung der Lupe erklärt sich nun so: Ohne Lupe sieht das Auge einen Gegenstand unter dem Sehwinkel ε , wenn sich das Objekt in der Entfernung der deutlichen Sehweite s befindet. Mit Lupe

beträgt der Sehwinkel ϵ' , wenn sich der Gegenstand in der Brennebene der Lupe, d.h. im Abstand f vor der Lupe befindet:

a) deutliche Sehweite

b) Vergrösserung des Sehwinkels

Für die beiden Sehwinkel ε und ε' gilt:

$$\varepsilon \approx \tan(\varepsilon) = \frac{h}{s}$$
 bzw. $\varepsilon' \approx \tan(\varepsilon') = \frac{h}{f}$

und folglich für die Winkelvergrösserung V_L der Lupe:

$$V_L = \frac{\epsilon'}{\epsilon} = \frac{s}{f}$$

Wenn sich ein Gegenstand im Abstand der Brennweite vor einer Lupe befindet, erzeugt die Lupe ein unendlich weit entferntes virtuelles Bild des Gegenstandes (vgl. Text in der Aufgabe 12.3).

Befindet sich der Gegenstand etwas näher vor der Lupe, entsteht ein virtuelles Bild in endlicher Entfernung. Die Lichtstrahlen eines Objektpunktes verlaufen dann hinter der Lupe nicht mehr parallel, sondern laufen etwas auseinander. Durch Akkomodation kann trotzdem ein reelles Bild auf der Netzhaut des Auges entstehen.

Bestimmen Sie den minimalen Abstand g eines Gegenstandes vor einer Lupe der Brennweite f, damit das Auge bei einer deutlichen Sehweite so den Gegenstand gerade noch scharf sehen kann.

- a) allgemein algebraisch
- b) für die Zahlenwerte f = 100 mm, $s_0 = 25 \text{ cm}$

Hinweise:

- Betrachten Sie sowohl die Lupe als auch das Auge (d.h. die Gesamtheit aller lichtbrechenden Teile des Auges) als dünne Linsen.
- Vernachlässigen Sie den Abstand d zwischen der Lupe und dem Auge, d.h. es gelte d ≈ 0 .

12.5 **Experimente Posten 1: Lupe** (30 min)

- a) Lupe freihändig (Linse f = 100 mm, Blatt mit sehr kleiner Schrift)
 - i) Halten Sie ein Blatt Papier mit sehr kleiner Schrift etwa 50 cm vor Ihre Augen, und nähern Sie das Blatt langsam Ihren Augen. Beobachten Sie das Schriftbild bei den Entfernungen von etwa 50 cm, 25 cm und 10 cm. Bestimmen Sie den Nahpunkt bzw. die deutliche Sehweite Ihrer Augen.
 - ii) Legen Sie das Blatt auf den Tisch. Schauen Sie mit einem Auge aus einer Entfernung von etwa 10 cm auf das Blatt. Halten Sie dann die Lupe (Linse) zwischen das Blatt und das Auge. Bestimmen Sie den Abstand der Lupe von der Schrift, damit Sie ein möglichst grosses aufrechtes virtuelles Bild der Schrift erhalten.
- b) Lupe auf optischer Profilbank (Optische Profilbank, Linsen f = +50/+100 mm, Strichmuster mit 2 Strichen, Strichmuster mit 10 Strichen)

Auf der optischen Bank ist eine Lupe der Brennweite 50 mm montiert (bei der Marke 55 cm). Im Abstand der Brennweite befindet sich ein Strichmuster mit 2 Strichen (bei der Marke 50 cm) und im

Abstand der deutlichen Sehweite (bei der Marke 30 cm, d.h. 25 cm von der Lupe entfernt) ein Strichmuster mit 10 Strichen.

- Nähern Sie Ihr rechtes Auge der Linse, bis Sie das Strichmuster mit 2 Strichen scharf sehen. Blicken Sie gleichzeitig mit Ihrem linken Auge an der Linse vorbei auf das Strichmuster mit 10 Strichen. Zählen Sie, wieviele Abstände zwischen den Strichen auf dem Strichmuster mit 10 Strichen dem Abstand der beiden Sriche auf dem Strichmuster mit 2 Strichen entsprechen. Vergleichen Sie diese Zahl mit der Winkelvergrösserung V_L der Lupe.
- ii) Wiederholen Sie den gleichen Versuch mit der Linse der Brennweite 100 mm. Das Strichmuster mit 2 Linien soll nun aber zur Marke 45 cm hin verschoben werden, damit sich dieses in der Brennebene der Linse befindet.

12.6	Bearbeiten Sie im Arbeitsbuch Mills zu Tipler/Mosca die folgende Aufgabe: A29.8			
12.7		Beurteilen Sie, ob die folgenden Aussagen wahr oder falsch sind. Kreuzen Sie das entsprechende Kästchen an.		
			wahr	falsch
	a)	Der Hauptzweck einer Linse ist die Vergrösserung des Sehwinkels.		
	b)	Eine Lupe erzeugt immer ein virtuelles Bild des Gegenstandes im Unendlichen.		
	c)	Eine Lupe kann nur als "Vergrösserungsglas" verwendet werden, wenn ihre Brennweite kleiner ist als die deutliche Sehweite des Betrachterauges.		
	d)	Die Winkelvergrösserung einer Lupe gibt an, um welchen Faktor das reelle Bild auf der Netzhaut grösser ist als der Gegenstand.		
	e)	Die Winkelvergrösserung hat keine physikalische Einheit.		

Lösungen

- 12.1
- 12.2 a)
 - b)
- 12.3
- 12.4 $f_A := Brennweite des Auges bei maximal möglicher Akkomodation$ a) $f_{tot} := Brennweite des Linsensystems Lupe-Auge bei maximal möglicher Akkomodation$ b := Bildweite im Auge = Abstand Hornhaut-Netzhaut

ohne Lupe: mit Lupe: $\frac{\frac{1}{g} + \frac{1}{b} = \frac{1}{f_{tot}}}{\frac{1}{f_{tot}} = \frac{1}{f} + \frac{1}{f_A}}$

$$\Rightarrow$$
 $g = \frac{1}{f + s_0} s_0$

- $g = \frac{f}{f + s_0} s_0 = 7.1 \text{ cm}$ b)
- 12.5
- 12.6
- 12.7 wahr a)
 - b) falsch
 - c) wahr
 - d) falsch
 - e) wahr