Aufgaben 4 Bildentstehung, Spiegel und Linsen Bildkonstruktion bei sphärischen Spiegeln

Lernziele

- sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
- einen bekannten oder neuen Sachverhalt analysieren und beurteilen können.
- eine neue Problemstellung selbstständig bearbeiten können.
- wissen und verstehen, wie die Hauptstrahlen an einem sphärischen Hohl- und einem sphärischen Wölbspiegel reflektiert werden.
- mit Hilfe der Hauptstrahlen das Bild eines Gegenstandes bei einem sphärischen Hohl- und einem sphärischen Wölbspiegel von Hand konstruieren können.
- beurteilen können, ob ein Bild bei einem sphärischen Hohl- und einem sphärischen Wölbspiegel reell oder virtuell ist.
- alle bei einem sphärischen Hohl- und einem sphärischen Wölbspiegel auftretenden Fälle für die Existenz und Eigenschaft eines Bildes kennen und verstehen.
- die Abbildungsgleichung für sphärische Spiegel kennen, verstehen und anwenden können.
- die Gleichung für die Lateralvergrösserung des Bildes bei einem sphärischen Spiegel kennen, verstehen und anwenden können.
- die Vorzeichenregeln für die in den genannten Gleichungen auftretenden Grössen kennen.

Aufgaben

- 4.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt:
 - 29.1 Spiegel (ab Formel 29.1 bis Abschnittsende, Seiten 1063 bis 1070)

Hinweis:

- In der Übung 29.1 auf der Seite 1069 gibt es in den Lösungen einen Fehler: Im Teil 1 der Lösung sollte der Nenner auf der rechten Seite in der letzten Gleichung **10.0 m** lauten, nicht 20.0 m.
- 4.2 Konstruieren Sie von Hand die Bilder eines Gegenstandes bei einem sphärischen Hohl- bzw. Wölbspiegel.

Skizzieren Sie zuerst den Spiegel und den Gegenstand (als Pfeil). Konstruieren Sie dann für alle angegebenen Fälle für die Gegenstandsweite g (im Vergleich zur Brennweite f) mit Hilfe der Hauptstrahlen das entsprechende Bild.

a) Hohlspiegel (f > 0)

i)
$$g < f$$

$$g = f$$

iii)
$$f < g < 2f$$

iv)
$$g = 2f$$

$$v)$$
 $g > 2f$

b) $W\"{o}lbspiegel (f < 0)$

i)
$$g < -f$$

ii)
$$g = -f$$

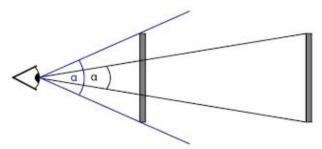
iii)
$$-f < g < -2f$$

iv)
$$g = -2f$$

$$y$$
) $g > -2f$

Hinweis

- Bearbeiten Sie diese Aufgabe 4.2 parallel mit der folgenden Aufgabe 4.3.
- 4.3 Studieren Sie das folgende **Applet**:
 - Bilder am Hohl- und Wölbspiegel


Hinweis:

- Im Applet ist jeweils der Mittelpunktsstrahl und der Scheitelpunktsstrahl (Strahl, welcher am Scheitelpunkt des Spiegels reflektiert wird) dargestellt.
- 4.4 (siehe nächste Seite)

- 4.4 Erstellen Sie für einen sphärischen Hohl- und einen sphärischen Wölbspiegel je eine Tabelle, die für alle in der Aufgabe 4.2 angegebenen Fälle die folgenden Informationen enthält:
 - a) Beurteilung, ob das Bild ...
 - ... überhaupt existiert.
 - ... reell oder virtuell ist.
 - ... sich vor oder hinter dem Spiegel befindet.
 - ... aufrecht oder verkehrt ist.
 - ... im Vergleich zum Gegenstand gleich gross, vergrössert oder verkleinert ist.
 - b) Vorzeichen ...
 - ... des Krümmungsradius' r.
 - ... der Brennweite f.
 - ... der Bildweite b.
 - ... der Bildgrösse B.
 - ... der Lateralvergrösserung V.
 - c) Betrag der Lateralvergrösserung V: |V| = 1, |V| > 1, |V| < 1
- 4.5 Bearbeiten Sie im Arbeitsbuch Mills zu Tipler/Mosca die folgenden Aufgaben: 29.2, 29.6, 29.7, 29.9, 29.10, 29.11, 29.12, 29.13

Hinweise zu 29.6:

- Wie gross oder wie weit entfernt ein Gegenstand (bzw. ein Bild eines Gegenstandes) von einem Beobachter zu sein scheint, hängt vom sogenannten **Sehwinkel** (Winkel α in der untenstehenden Figur) ab, unter welchem der Gegenstand (bzw. das Bild) erscheint. Der Sehwinkel α wird sowohl durch die wirkliche Grösse als auch durch die wirkliche Entfernung des Gegenstandes (bzw. Bildes) bestimmt. Rein optisch kann der Beobachter nur den Sehwinkel α feststellen. Man kann also z.B. nicht zwischen einem nahen kleinen und einem fernen grossen Gegenstand (bzw. Bild) unterscheiden, wenn der Sehwinkel in beiden Fällen gleich gross ist.

- Bei der Aufgabe 29.6 geht es um den Sehwinkel, unter welchem das im Rückspiegel sichtbare virtuelle Bild des Fahrzeuges erscheint.
- Das virtuelle Bild des Fahrzeuges im *gewölbten* Rückspiegel soll verglichen werden mit dem virtuellen Bild, das bei einem *ebenen* Rückspiegel (Planspiegel) entstehen würde.
- Zeigen Sie, dass der Sehwinkel, unter welchem das virtuelle Bild des Fahrzeuges erscheint, bei einem Wölbspiegel kleiner ist als bei einem Planspiegel.
- Der kleinere Sehwinkel beim Wölbspiegel ist der Grund dafür, dass das Fahrzeug weiter entfernt scheint als es wirklich ist.
- 4.6 (siehe nächste Seite)

4.6	Beur Kreu			
			wahr	falsch
	a)	Nur reelle Bilder können auf einem Schirm beobachtet werden.		
	b)	Eine positive Bildweite bedeutet, dass das Bild aufrecht ist.		
	c)	Eine negative Bildgrösse bedeutet, dass das Bild verkehrt ist.		
	d)	Das Bild in einem ebenen Badezimmerspiegel ist virtuell.		
	e)	Ein Wölbspiegel kann sowohl reelle als auch virtuelle Bilder eines Gegenstandes erzeugen.		

Lösungen

4.1 ...

Hinweis zu den Lösungen (Lehrbuch Tipler/Mosca, Seite 1097) zu den Zusatzaufgaben 29.1 und 29.2:

- Die Reihenfolge der Lösungen zu den Zusatzaufgaben 29.1 und 29.2 ist falsch: Bei 29.1 steht die Lösung von 29.2, und bei 29.2 steht die Lösung von 29.1.
- 4.2 (siehe Aufgabe 4.3)
- 4.3 ...
- 4.4

	Hohlspiegel	r > 0, f > 0			•	•	
g	Bild				b	В	V
g < f	virtuell	hinter dem Spiegel	aufrecht	vergrössert	b < 0	B > 0	V > 0, V > 1
g = f	kein Bild						
f < g < 2f	reell	vor dem Spiegel	verkehrt	vergrössert	b > 0	B < 0	V < 0, V > 1
g = 2f	reell	vor dem Spiegel	verkehrt	gleich gross	b > 0	B < 0	V < 0, V = 1
g > 2f	reell	vor dem Spiegel	verkehrt	verkleinert	b > 0	B < 0	V < 0, V < 1

	Wölbspiegel	r < 0, f < 0			i	ī	
g	Bild				b	В	V
g < f	virtuell	hinter dem Spiegel	aufrecht	verkleinert	b < 0	B > 0	V > 0, V < 1
g = f	virtuell	hinter dem Spiegel	aufrecht	verkleinert	b < 0	B > 0	V > 0, V < 1
f < g < 2f	virtuell	hinter dem Spiegel	aufrecht	verkleinert	b < 0	B > 0	V > 0, V < 1
g = 2f	virtuell	hinter dem Spiegel	aufrecht	verkleinert	b < 0	B > 0	V > 0, V < 1
g > 2f	virtuell	hinter dem Spiegel	aufrecht	verkleinert	b < 0	B > 0	V > 0, V < 1

Bemerkung (vgl. Aufgabe 3.6):

- Es gibt zwei verschiedene Konventionen für das Vorzeichen des Radius' r bei einem sphärischen Spiegel.
- Vorzeichen-Konvention im Lehrbuch Tipler/Mosca: Hohlspiegel r > 0, Wölbspiegel r < 0
- Verbreitete Vorzeichen-Konvention in der Optikliteratur: Hohlspiegel r < 0, Wölbspiegel r > 0
- Da wir mit dem Lehrbuch Tipler/Mosca arbeiten, verwenden wir in diesem Kurs die Vorzeichen-Konvention Tipler/Mosca.
- 4.5 ..

Hinweise zur Lösung von 29.7 im Arbeitsbuch Mills zu Tipler/Mosca:

- Im algebraischen Ausdruck für die Bildweite b, b = ..., gibt es einen Fehler: Der Nenner sollte lauten: 2g r.
- Das Vorzeichen des Radius' r des Löffels ist falsch. r sollte **negativ** sein, also r = -2 cm.

Hinweis zur Lösung von 29.13 im Arbeitsbuch Mills zu Tipler/Mosca:

- Ganz am Schluss gibt es einen Fehler: Das Bild liegt 4.0 m vor dem Spiegel, nicht 4 cm.

4.6 (siehe nächste Seite)

- 4.6 a) wahr
 - b) falsch
 - c) wahr
 - d) wahr
 - e) falsch